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Abstract

In this expository paper, we show how Ribet’s theorem applies to Frey curves and how, with
the Modularity Theorem, the proof of Fermat’s Last Theorem was attained. We follow the
original paper [6], though I’ve supplied additional commentary and reorganized some of the
results.
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1 Introduction

The Fermat curve Fn is defined to be the complex set of solutions to

xn + yn = zn

for n ≥ 2. Each Fn is a non-singular plane projective curve, and since the homogeneous polynomial
that defines it has degree n, the genus-degree formula (proved in the last problem set) tells us that
the genus of Fn is 1

2 (d− 1)(d− 2). In 1975, Yves Hellegouarch became one of the first mathemati-
cians to think of associating rational points on Fn with elliptic curves. Specifically, given a solution
an + bn = cn, Hellegouarch defined the curve y2 = x(x− an)(x+ bn). Gerheard Frey studied these
curves, which soon became known as Frey Curves, and drew attention to unusual properties that
they have.

Let E be an elliptic curve defined over a field K of characteristic zero, and let K̄ be the
algebraic closure of K. Let l ≥ 5 be prime and recall that the ln-torsion points of E over K̄, denoted
E(K̄)[ln], is isomorphic to (Z/lnZ)2. The absolute galois group GK := Gal(K̄/K) acts on E(K̄)[ln]
by transforming the coordinates of points. Notice that the image of this transformation still lies in
E(K̄)[ln] since E is defined over K so any element in the absolute galois group leaves the equation
of E fixed. We have a natural chain of projections E(K̄)[ln+1]→ E(K̄)[ln] which allows us to define
the Tate module, Tl(E) := lim←−E(K̄)[ln], which GK still acts on. From its construction, we see that

Tl(E) ∼= Z2
l , and hence we have a Galois representation ρE,l : GK → GL2(Zl) ⊂ GL2(Ql) which can

be shown to be continuous. Note that from our discussion above, we also have the associated repre-
sentations ρ̄E,ln : GK → Aut

(
E(K̄)[ln]

) ∼= GL2(Fln) which can be realized as ρ̄E,ln
∼= ρE,l (mod ln).
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2 The Setup for Ribet

Now that we have our definitions out of the way, we can start working with them. From now
on, we let E be a Frey curve, unless specified otherwise. The discriminant for a general elliptic
curve of the form y2 = x3 + Ax2 + Bx is ∆ = (AB)2 − 4B3. Hence for our Frey curve E, we can
use the fact that an + bn = cn to show

∆(E) = (bn − an)2(−anbn)2 − 4(−anbn)3 = (abc)2n

It turns out that this is not the minimal discriminant, but with some simple change of variables we
get a minimal discriminant of

∆min(E) = 2−8(abc)2n

For any prime p, we can take E and consider its reduction to a curve Ẽ over Fp. If Ẽ is still
an elliptic curve, then we say that E has good reduction at p and otherwise it has bad reduction.
We say that an elliptic curve is semi-stable if for any prime p of bad reduction, only two roots
become congruent modulo p. Since a, b, and c are coprime and E has bad reduction precisely at
the primes dividing abc, we get that Frey curves are semi-stable.

We now prove various propositions which will allow us to apply Ribet’s main theorem to
Frey curves. Specifically, we first show that ρ̄E,l (defined in the introduction) is irreducible and
finite at every odd prime.

Proposition 1 ([7] Proposition 6): The representation ρ̄E,l is an irreducible two-
dimensional representation of Gal(Q̄/Q).

Proof: This result was first realized by Mazur in [5], though Serre gave a simple proof in [7].
Here we follow Serre’s argument, modified slightly with ideas from this proposition’s proof in [2].

Seeking a contradiction, suppose that ρ̄E,l is reducible. Then E contains a subgroup X of

order l that is rational over Q. Since E is semi-stable and satisfies E(Q)[2] ∼=
(
Z/2Z

)2
(since E splits

completely over Q), the existence of X implies that we can find an isogenous elliptic curve E′ which
has a rational point of order l and also satisfies |E′(Q)[2]| = 4. This implies that E′(Q)tors ≥ 4l,
but by Mazur’s Theorem there are finitely many possibilities for the torsion subgroup of E′(Q) and
the largest of which only has cardinality 16, so for l ≥ 5 we have a contradiction.

Let p be prime and choose a place v in Q̄ lying over p. The decomposition group Dv can be
identified as Gal(Q̄p/Qp) where Q̄p is the algebraic closure of Qp. Let Iv be the inertia subgroup of

Dv and recall that Dv/Iv is isomorphic to the pro-cyclic group Ẑ generated by the Frobenius map
x 7→ xp (note that specifically it is a topological generator with the Krull topology on our group).
We can lift this generator back to Dv and obtain an element denoted Frobv, which is well defined
modulo Iv.

We say that the representation ρ is unramified at p if ρ(Iv) = {1}. A different place v′ above
p takes the form v′ = σv for some σ ∈ Gal(Q̄/Q), and from the definitions of decomposition and
inertia groups, we see that Dv′ and Iv′ are conjugate to Dv and Iv, respectively. Therefore, being
unramified at p is independent of our choice of v. If ρ is unramified at p, notice that ρ(Frobv) is
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independent of our choice in lifting and hence is well-defined.
Given an integer k, we define the valuation of k at p, denoted vp(k), to be the exponent of

the highest power of p which divides k. We are now ready for the next two propositions.

Proposition 2: Let E be an elliptic curve of the form y2 = x(x − A)(x + B) for A,B
non-zero relatively prime integers with A + B non-zero. If p 6= l, then ρ̄E,l is unramified at p
if and only if vp(∆min) ≡ 0 (mod l).

Sketch proof: Here I’ve combined two results from Ribet’s paper into one. To prove this
statement, one first shows that if p 6= l and p|N (where N is the conductor of E) then ρ̄E,l is
unramified at p if and only if vp(∆min) ≡ 0 (mod l). This is Proposition 3.4 in [6], though the proof
redirects the reader to [3]. The details are omitted here since it is a consequence of the theory of
Tate curves, which I don’t have time to go into.

We now want to strip away the condition that p|N . If p and N are coprime, then E has
good reduction at p and as a consequence is ρ̄E,l is unramified at p (this is part of Proposition 3.3
in [6] whose proof can be found in [7]). Furthermore, (p,N) = 1 implies that vp(∆min) = 0 and
hence vp(∆min) ≡ 0 (mod l) is satisfied.

Note that Proposition 3.3 in [6] also claims that for each v dividng p, we have the congruence
Tr
(
ρ(Frobv)

)
≡ p + 1 − |Ẽ(Fp)| (mod l), but we won’t need this result for the purposes of this

paper. Now, all that’s left for us to do is address the case when p = l, and to do so we need to
introduce the notion of finiteness.

Let p be prime and v be a place above it. By restricting the action of GQ on E[l] to the
decomposition group Dv, we may view E[l] as a Gal(Q̄p/Qp)-module. We say that the represen-
tation ρ is finite at p if there is a finite flat group scheme V of type (l, l) over Zp such that V(Q̄p)
and E[l] are isomorphic as Gal(Q̄p/Q)-modules. It can be shown that when p 6= l, finiteness at p
implies that ρ is unramified at p.

Proposition 3 ([6] Proposition 3.5): The representation ρ̄E,l is finite at a prime number p
if and only if vp(∆min) ≡ 0 (mod l).

For a proof of this proposition, Ribet directs the reader to [7] page 201, though I could not find an
explanation for this statement there. Note that the only additional information that this proposi-
tion gives us is finiteness for the case p = l, but this allows us to fully utilize Ribet’s Theorem in
the next section.

3 Ribet’s Theorem and Implications

We start off with the main theorem of Ribet’s 1990 paper:
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Ribet’s Theorem ([6] Theorem 5.1): Let ρ be an irreducible two-dimensional representa-
tion of GQ over a finite field of characteristic l > 2. Assume that ρ is modular of square free
level N , and that there is a prime q|N where q 6= l and at which ρ is not finite. Finally, suppose
that p is a divisor of N at which ρ is finite. Then ρ is modular of level N/p.

The proof of this theorem is omitted since it is above the scope of this paper. However, we have
the following corollary.

Corollary 1: The Modularity Theorem for semi-stable elliptic curves implies Fermat’s Last
Theorem.

Proof: Note that if there is an integral point (a, b, c) on Fn where n = rs, then (ar, br, cr) is
a solution to Fs. Hence to prove Fermat’s Last Theorem, it suffices to show there are no integer
points on Fl where l is prime. For the remainder of this proof, we fix l and let E denote the Frey
curve associated to Fl.

Recall that from Proposition 1, we know that ρ̄E,l is indeed a two-dimensional irreducible
representation of GQ over Fp. We also know that ∆min(E) = 2−8(abc)2l, so for any prime p > 2
we have vp(∆min) ≡ 0 (mod l), and therefore Proposition 3 implies that ρ̄E,l is finite at every odd
prime.

An equivalent definition of semi-stable elliptic curves is that the conductor N of E is square
free. Since the conductor of an elliptic curves is an integer divisible precisely at the primes where
E has bad reduction, we have

N =
∏

p|(abc)

p

where our product ranges over primes. Note that to satisfy al + bl = cl, exactly two of the integers
must be odd and the other must be even. We now know that 2|N but ρ̄E,l is not finite at 2. If the
Modularity Theorem is true for semi-stable elliptic curves, then ρ̄E,l is modular and we can find a
weight two newform f of level N .

We can now employ Ribet’s Theorem to get a weight two newform of level N
p for any odd

prime p|N . In fact, we can inductively apply Ribet’s Theorem to eventually get a a weight two
newform g of level 2. Let S2(Γ0(M)) denote the space of weight 2 cusp forms of Γ0(M). There
are many ways to compute the dimension of S2(Γ0(M)) (see [1] for instance), and it can be shown
that dim

(
S2(Γ0(2))

)
= 0. Therefore, such a g cannot exist and so we have proven Fermat’s Last

Theorem.

4



References

[1] Diamond, Fred and Jerry Shurman. A First Course in Modular Forms. Springer, New York,
2005.

[2] Darmon, Henri, Fred Diamond, Richard Taylor. Fermat’s Last Theorem (2007).

[3] Frey, Gerhard. Links between stable elliptic curves and certain diophantine equations. Annales
Universitatis Saraviensis 1, 1–40 (1986).

[4] Google Translate, Google. https://translate.google.com.

[5] Mazur, Barry. Rational isogenies of prime degrees. Invetiones Mathematicae 44, 129–162 (1978).

[6] Ribet, Kenneth. From the Taniyama-Shimura conjecture to Fermat’s last theorem. Annales de
la Facult des Sciences de Toulouse (5) 11, no. 1, 116–139 (1990).

[7] Serre, Jean-Pierre. Sur les reprsentations modulaires de degr 2 de Gal(Q̄/Q). Duke Mathematics
Journal 54, 179–230 (1987).

5


	Introduction
	The Setup for Ribet
	Ribet's Theorem and Implications

