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Abstract

This exposition follows Francesc Castella’s lecture as part of UC Santa Barbara’s seminar on
Iwasawa theory for elliptic curves at supersingular primes.

Iwasawa Theory
Let us start with the original theory that Kenkichi Iwasawa developed. To do so, we begin

with a number field F , a prime p > 2, and a Galois extension F∞/F where Gal(F∞/F ) ∼= Zp. By
recognizing the p-adic integers as a projective limit, we can find a decomposition F∞ =

⋃
n≥0 Fn

such that Gal(Fn/F ) ∼= Z/pnZ.
Now, we utilize the decomposition Z×p ∼= ∆× Γ, where ∆ is a small torsion subgroup and Γ

is a procyclic, pro-p group. Specifically, ∆ ∼= {±1} if p = 2 and otherwise ∆ is isomorphic to the
(p− 1)-th roots of unity, and Γ ∼= Zp. As a classic example, we can consider F = Q, which gives us
the following extension of fields

Q

Q(ζp)

Q∞ := (F∞)∆

F∞ = Q(ζp∞)

where ζn = e
2πi
n .

Theorem (Iwasawa 1959 [2]): Let An = Cl(OFn)[p∞] be the p-Sylow subgroup of the ideal
class group of Fn, and let #An = pen . Then there exist integers λ,ν, and µ ≥ 0 such that

en = λn+ µpn + ν

as n goes to infinity.

This is the classical framework for Iwasawa theory, and for the remainder of this section, we will
sketch the proof of the theorem above. The ideas presented in this proof provide the inspiration for
the generalization of Iwasawa theory to other settings.
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By class field theory, we can use the Artin map to construct an isomorphismAn ∼= Gal(Ln/Fn),
where Ln is the maximal abelian p-extension of Fn which is unramified at all primes in Fn.
We call Ln the p-Hilbert Class field of Fn. Now let L∞ :=

⋃
n≥0 Ln, which allows us to define

X∞ := Gal(L∞/F∞). This will be an abelian pro-p group, making it a Zp-module. Furthermore,
it has a continuous Γ-action defined by

γ · x = γ̃xγ̃−1 ∀γ ∈ Γ, x ∈ X∞

where γ̃ ∈ X∞ is chosen such that γ̃|F∞ = γ. This makes X∞ a module over the completed group
ring Λ := Zp[[Γ]], which we call the Iwasawa Algebra. We can visualize our fields with the following
diagram:

F

F∞

L∞

X∞

∆× Γ

Let’s take a moment to to get a sense of what Λ “looks like.” If we let γ ∈ Γ be a topological
generator (that is, 〈γ〉 is dense in Γ), then there exists a unique isomorphism

Φ : Λ
∼−−−→ Zp[[T ]]

Φ : γ 7−−−→ 1 + T

With this isomorphism in mind, we recall the fact that Zp[[T ]] is a UFD, which is complete and
Noetherian with maximal ideal (p, T ).

Now that we’ve identified Λ, we want to find out more about X∞. We start by noting that
X∞ is a finitely generated Λ-module. Next, we use the structure theorem of finitely generated
modules over integrally closed Noetherian rings. This theorem implies that there exists a Λ-module
homomorphism

X∞ −→ Λr ⊕
s⊕
i=1

Λ/
(
fi(T )

)ai ⊕ t⊕
j=1

Λ/
(
p
)bj

with finite kernel and cokernel, where r, s, t ≥ 0 and fi(T ) = T deg(fi) + pgi(T ) are irreducible
distinguished polynomials. This theorem and its proof are similar to the structure theorem of
finitely generated modules over PIDs, but we have to use this slightly weaker version since Zp[[T ]]
isn’t a PID.

The next major result that can be shown is that X∞ is actually a Λ-torsion module, meaning
that r = 0 in our equation above. Furthermore, we are ready to state that the variables λ and µ
from Iwasawa’s Theorem come from:

λ =

s∑
i=1

ai · deg(fi)

µ =

t∑
j=1

bj
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The proof proceeds by showing that

(X∞)Γn
∼= Gal(Ln/Fn)

where Γn is the unique subgroup of Γ with [Γ : Γn] = pn and (X∞)Γn is the largest quotient
submodule of X∞ on which Γn acts trivially. That is, if γ is our topological generator of Γ, then
Γn is topologically generated by γp

n

and (X∞)Γn = X∞/(γ
pn − 1)X∞. Recall that we’ve already

identified An = Cl(OFn)[p∞] with Gal(Ln/Fn), so to study the size of An, we can study the left-
hand size of our isomorphism above by applying the structure theorem we mentioned earlier to
(X∞)Γn . For more details, see the original paper or one of many expositions such as [1].

Now that we have walked through Iwasawa’a theorem, we can turn our attention to his main
conjecture. Before we state the conjecture, we must define the characteristic power series of X∞,
which is the principal ideal

CharΛ(X∞) :=
(
pµ

s∏
i=1

fi(T )ai
)
⊆ Λ

We can now state

Iwasawa’s Main Conjecture (Iwasawa 1969): Let F∞ be a cyclotomic Zp-extension of F =
Q(µp). Then with the notion from above,

CharΛ(X∞) =
(
ζp
)

where ζp is the p-adic analogue of the Riemann zeta function.

Mazur’s Program
After Iwasawa’s main conjecture was proved in 1984 by Barry Mazur and Andrew Wiles [8],

mathematicians set out to prove generalizations of the conjecture to other situations. For instance,
if we replace the p-adic zeta function with a different L-function, what should be our new Λ-module
X∞? For the remainder of this section, we will explore what happens when the p-adic zeta function
is replaced by the Hasse–Weil zeta function, and we will see how Iwasawa’s theory translates to the
world of elliptic curves.

Let E/Q be an elliptic curve and p > 2 be a good ordinary prime for E (that is, p - ap
where ap := p+ 1−#Ẽ(Fp)). Consider a cyclotomic Zp-extension Q∞/Q which gives us a tower of
extensions Qn/Q where Gal(Qn/Q) ∼= Z/pnZ. This setup is similar to what we did in the previous
section, but whereas before we focused on the class group, we will now focus on the Selmer group.

For an algebraic field extension L/Q, the p∞-Selmer group fits into the following short exact
sequence

0 −→ E(L)⊗Qp/Zp −→ Selp∞(E/L) −→X(E/L)[p∞] −→ 0

and recall that Selp∞(E/L) ⊂ H1(GL, E[p∞]). If we let Γ = Gal(Q∞/Q), it can be shown that
Selp∞(E/L) is a Λ = Zp[[Γ]]-module. This makes it a reasonable substitute for what we called
X∞ in the previous section. However, this turns out not to be the correct analogous object.
Instead, we have to introduce the Pontryagin dual of a moduleM , which is the group of continuous
homomorphisms M∧ := Homcts(M, Qp/Zp). With this, we have
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Mazur’s Main Conjecture: Let χ∞ := Selp∞(E/Q∞)∧ be the Pontryagin dual of our p∞-
Selmer group. Then χ∞ is Λ-torsion and

CharΛ(χ∞) =
(
Lp(E)

)
⊂ Λ

where Lp(E) is the p-adic analogue of the Hassel-Weil L-function of E.

This conjecture is also called Iwasawa’s main conjecture for elliptic curves at ordinary primes.
The conjecture has been proven for many cases through the work of Kato [3], Skinner, and Urban
[7]. There are numerous consequences of this conjecture:

First, we can use Mazur’s Control Theorem [5] to show that L(E, 1) 6= 0 if and only if
# Selp∞(E/Q) < ∞. Now we can utilize the the conjecture to show that the p∞-Selmer group is
finite if and only if rankZE(Q) = 0 and #X(E/Q)[p∞] < ∞. Together, this proves the Birch
Swinnerton-Dyer conjecture in rank 0.

Second, if L(E, 1) 6= 0, then we can use Iwasawa theory to show that

ordp

(L(E, 1)

Ω

)
= ordp

(#X(E/Q) · CE/Q
(#E(Q)tors)2

)
which proves the p-part of the Birch Swinnerton-Dyer formula.

Supersingular Case
One small but important assumption that we made in the last section is that our prime p

was an ordinary prime for E. Now, suppose that p|ap (where as before ap = p + 1 − #Ẽ(Fp)).
When trying to model the situation like we did above, we run into two problems. First off, we have
two p-adic L-functions, Lp,α(E), Lp,β(E) ∈ Qp[[T ]], where α and β are the roots of x2 − apx + p.
And while Λ ⊂ Qp[[T ]], because ordp(α), ordp(β) > 0, we actually have Lp,α(E), Lp,β(E) /∈ Λ. The
second issue is that now, χ∞ = Selp∞(E/Q∞)∧ is not actually a Λ-torsion module.

Luckily for us, Pollack and Kobayashi found the right function and object X∞ so that we
get a result which mirrors Iwasawa’s original main conjecture. We let ap = 0, which happens
automatically for primes p > 3 which are supersingular.

Pollack showed in [6] that there exists a function L±p ∈ Λ which satisfies

Lp,α(E) = L+
p log+

p +L−p log−p α Lp,β(E) = L+
p log+

p −L−p log−p α

and note that we have β = −α.
Now focusing on our Selmer group, we have by definition Selp∞(E/Q∞) = lim−→ Selp∞(E/Qn)

where Selp∞(E/Qn) = {c ∈ H1(GQn , E[p∞])
∣∣ resv(c) ∈ δv

(
E(Qn,v) ⊗ Qp/Zp

)
}. But as we said

above, this module is too big. Instead, Kobayashi showed in [4] that we should use

Sel±p∞(E/Qn) = {c ∈ Selp∞(E/Qn) | resv(c) ∈ δv
(
E±(Qn,v)⊗Qp/Zp

)
}

for p|v, where E±(Qn,v) is Kobayashi’s ±-norm subgroup. With these objects, we are now ready
to state
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Kobayashi’s Main Conjecture: With the notation from this section, χ±∞ := Sel±p∞(E/Q∞)∧

is a Λ-torsion module and
CharΛ

(
χ±∞

)
=
(
L±p
)

which has been proven in many cases due to work done by Pollack, Rubin, and Wan.
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