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Abstract

Given an arbitrary finite index subgroup of SL2(Z), one can easily compute its genus. The
reverse question is less straightforward; given an arbitrary genus, what can we say about the
non-congruence and congruence subgroups that have that genus? In this paper, we investigate
the possible genera (or possibly, the lack of genera) that congruence subgroups can attain.

Preliminaries and motivation

In this paper, we are interested in finite index subgroups of SL2(Z), the special linear group
consisting of 2-by-2 integer matrices with determinant 1. Recall that the principal congruence
subgroup of level N is defined as

Γ(N) =

{(
a b
c d

)
∈ SL2(Z)

∣∣∣∣∣
(
a b
c d

)
≡
(

1 0
0 1

)
(modN)

}
and a finite index subgroup Γ < SL2(Z) is called a congruence subgroup of level N if there exists
some integer N ≥ 1 such that Γ(N) ≤ Γ. Otherwise, we call Γ a non-congruence subgroup.

Subgroups of SL2(Z) act on the upper half plane H by the linear fractional transformation
γτ 7→ aτ+b

cτ+d , where γ =
(
a b
c d

)
∈ SL2(Z). Furthermore, we can extend this to the cusps to get

an action on the extended upper-half plane H∗ = H ∪ Q ∪ ∞. Let Γ < SL2(Z) be a finite index
subgroup, then we define a fundamental domain DΓ for Γ to be a hyperbolic polygon in H∗ such
that for every τ ∈ H∗, the interior of DΓ contains exactly one point from the Γ-orbit of τ . We can
then give Γ\H a complex structure to obtain a noncompact Riemann surface which we will denote
as Y (Γ). We can compactify this space by adding finitely many points corresponding to the cusps
of Γ. This space, defined by Γ\H∗, is denoted as X(Γ) and when Γ is a congruence subgroup, we
call it a modular curve. For any finite index subgroup Γ < SL2(Z), we define the genus of Γ to be
the genus of the space X(Γ), and we denote it as g(Γ).

Rademacher sparked interest in the math community when he conjectured that there are
only finitely many genus 0 congruence subgroups of PSL2(Z). This inspired work by Knopp and
Newman [5], McQuillen [8], and Dennin [2], each of whom made progress on Rademacher’s con-
jecture and its natural generalization to arbitrary genus. Finally, Thompson proved that there are
only finitely many congruence subgroups of PSL2(R) for any fixed genus g [10].

Thompson’s result should come as a fairly surprising fact. Here’s one reason why; the ex-
istence of non-congruence subgroups is itself a surprising phenomenon that occurs in SL2, and
Thompson’s theorem proves that there are a lot more non-congruence subgroups than there are
congruence subgroups. Let me elaborate on this a bit more. For n ≥ 3, any finite index subgroup
of SLn(Z) must be a congruence subgroup, where the principal congruence subgroups of SLn are
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defined in the same way as in SL2, reducing each entry modulo N . We say that SLn for n ≥ 3 has
the“ congruence subgroup property,” while SL2 does not (this points to a larger, very open question
as to which arithmetic groups have the congruence subgroup property). However, using techniques
from Kulkarni’s paper [6], one can explicitly construct infinitely many finite index subgroups of
SL2(Z) with any arbitrary genus. This implies that for any fixed genus g, there are finitely many
congruence subgroups with that genus but infinitely many non-congruence subgroups!

This leads me to my main question:

� 

Question 1: Do congruence subgroups of SL2(Z) attain every genus?

� 	
The response to most mathematical questions is typically, why should we care? Well for one thing,
if congruence subgroups miss a set of integers with positive density (or even if it misses any non-
empty set), that’s another example of how much SL2 fails the congruence subgroup property.

If you aren’t totally satisfied with that motivation, here’s a little more; take any non-singular
algebraic curve defined by coefficients that are algebraic numbers, we know this represents a compact
Riemann surface, and Belyi’s theorem (1979) proves that we can identify this surface as Γ\H∗ where
Γ is a finite index subgroup of SL2(Z). First off, Belyi’s theorem is awesome and quite general
(the only conditions imposed on our algebraic curve is that it’s non-singular and the coefficients
it’s defined by are algebraic numbers!), and the fact that SL2(Z) fails the congruence subgroup
property means that not all of these algebraic curves are modular curves. In fact, if Question 1 is
answered negatively, then there are some genera where none of the algebraic curves (that satisfy
the conditions above) with that genus are modular curves.

So, hopefully your interest is a bit piqued, and we can get into some approaches.

Counting Genera

For a while, I was trying to prove that the answer to Question 1 is ‘yes!’ because otherwise
the consequence in regards to Belyi’s theorem would be pretty surprising to me. However, after
unsuccessfully trying to explicitly construct congruence subgroups of arbitrary genus, I gave up for
a while. A year and a half later, my interest in the problem reignited and I figured, why not try to
prove the answer to Question 1 is ‘no!’

There are known formulas for computing the genus of various congruence subgroups, such
as for Γ(N), Γ0(N), and Γ1(N). The genus increase with N at different rates for these classes
of subgroups, and it increases the slowest for Γ0(N). One might wonder if subgroups of the form
Γ0(N) attain every genus, but it can be checked using Sage that this is not true; the first few genera
that are never attained by elements of Γ0(N) are 150, 180, 210, 286, 304, 312, 336. In fact, it was
proved in [1] that the set

{
g
(
Γ0(N)

)}
N∈Z is a density zero subset of the integers. So maybe ‘no’ to

question 1 isn’t unfounded—and it would be very interesting if congruence subgroups as a whole
only attained a density zero subset.

To begin, let’s start with a proposition.

Proposition 1: Given finite index subgroups Γ(N) < Γ1,Γ2 < SL2(Z)
i) If Γ1 < Γ2, then g(Γ1) > g(Γ2)
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ii) If Γ1 and Γ2 are conjugate (in SL2(Z)), then g(Γ1) = g(Γ2).

Proof: i) Given Γ1 < Γ2, there is a natural projection of the corresponding modular curves
f : X(Γ1)→ X(Γ2), which is a nonconstant holomorphic map. It can be shown that the degree of
this map is

deg(f) =

{
[Γ2 : Γ1]/2 if −I ∈ Γ2 and −I /∈ Γ1

[Γ2 : Γ1] otherwise

see [3] for more details. From the Riemann-Hurwitz theorem, we get

2g(Γ1)− 2 = deg(f)
(
2g(Γ2)− 2

)
+

∑
x∈X(Γ1)

(ex − 1)

where ex is the ramification index at x. Since deg(f) > 1 and
∑
x∈X(Γ1)(ex − 1) ≥ 0, we get our

result.
ii) Let

T = ±
(

0 −1
1 0

)
S = ±( 1 1

0 1 ) R = TS = ±
(

0 −1
1 1

)
McQuillan proved [9] that we can express the genus of Γ1 in terms of N , and the number of distinct
cyclic subgroups of Γ1 generated by conjugates (in SL2(Z)) of T , R, and Sd (where d ranges through
the divisors of N). The formula is a bit long, so I won’t write it out here, but notice that the values
it is a function of don’t change when to we pass to a conjugate subgroup Γ2 of the same level, so
we get g(Γ1) = g(Γ2).

As a consequence of this, we can show that Question 1 reduces to a problem of group theory and
counting.

Corollary 1:
(
# of distinct genera attained by congruence subgroups of level N

)
≤(

# of conjugacy classes of subgroups of SL2(Z/NZ)
)

Proof: From the third isomorphism theorem, we know that that congruence subgroups Γ of
level N are in one-to-one correspondence with subgroups G < SL2(Z/NZ), where Γ/Γ(N) ∼= G. It
is a brief exercise in group theory to show that two level N congruence subgroups Γ1 and Γ2 are
conjugate if and only if their corresponding subgroups of SL2(Z/NZ) are conjugate. Now using
Proposition 1, we can conclude our claim.

At this point, we can turn our attention to counting the conjugacy classes of subgroups of
SL2(Z/NZ). Each conjugacy class is in correspondence with a genus that congruence subgroups
attain. But just counting them isn’t enough—as we range through N , there are enough conjugacy
classes of subgroups to account for every integer. We need to use extra information provided by
the Riemann-Hurwitz theorem to see how the genera of level N congruence subgroups are spread
out.
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Since we can split up SL2(Z/NZ) =
∏
i SL2(Z/pni

i Z) using the Chinese Remainder theorem
(where N = pn1

1 pn2
2 . . . is the prime factorization), it makes sense to start with these building blocks.

This leads to a simpler question

� 

Question 2: Do congruence subgroups of prime level attain every genus?
� 	

The benefit of looking at Question 2 is that we know the subgroup structure of PSL2(Z/pZ).
Indeed, Dickson’s book [7] classifies the subgroups of PSL2(Fq) (King wrote a summary of this
result [4], though his classification is just sightly different from the book). Note that subgroups of
PSL2(Z/NZ) are in correspondence with congruence subgroups of level N which contain −I, and
just as Thompson did, we may want to consider these types of subgroups.

Here is some of the useful information we can get out of this:

Proposition 2: i) In PSL2(Z/pZ), there are ≤ 2p conjugacy classes of subgroups.
ii) Depending on the prime p > 2, every maximal subgroup of PSL2(Z/pZ) is conjugate

to a group among the following list:
• Upper triangular matrices (Γ0(p)/Γ(N))
• A dihedral group of order p− 1 or p+ 1
• S4, A4, or A5

iii) For p > 11, the smallest genus attained by a congruence subgroup of level p is
g
(
Γ0(p)

)
.

Proof: i) and ii) follow directly from parsing through the summary in Dickson’s book (page
285). For iii), we employ the genus equation

g(Γ) =
µ

12
− e2

4
− e3

3
− t

2
+ 1

where µ = [SL2(Z) : Γ], t is the number of cusps for Γ, and ei is the number of order-i elliptic
points. Using the structure theorem in Dickson’s book, we get that Γ0(p) is the subgroup with
lowest order. It’s also known that for Γ0(p) has e2, e3 ∈ {0, 1, 2} and t = 2, so using the equation
above, we see that we can’t find a smaller genus.

Now we have the following set up; as we range through p, the conjugacy classes of subgroups
of PSL2(Z/pZ) give us ≤ 2p genera, the smallest of which is g(Γ0(p)). By itself, the set {g(Γ0(p))}p
forms a density zero subset of the integers (recall [1]), and if Γ1 < Γ2 then

g(Γ1) ≥ [Γ2 : Γ1]
(
g(Γ2)− 1

)
+ 1

(from the proof of Proposition 1). The next step is: from this, what can we say about S := {g | g =
g(Γ) where Γ is a level p-congruence subgroup}?

4



References

[1] Csirik, Janos, et al. On the Genera of X0(N). Preprint, 2000.

[2] Dennin Jr., Joseph B. The genus of subfields of K(n). Proc. Amer. Math. Soc. 51 (1975), 282288.

[3] Diamond, Fred and Jerry Shurman. A First Course in Modular Forms. Springer, New York,
2005.

[4] King, Oliver. The subgroup structure of finite classical groups in terms of geometric configura-
tions. Expository paper, 2015.

[5] Knopp, Marvin, and Morris Newman. Congruence Subgroups of Positive Genus in the Modular
Group. Illinois Journal of Math 9, 577-583, (1965).

[6] Kulkarni, Ravi S. An Arithmetic-Geometric Method in the Study of the Subgroups of the Modular
Group. American Journal of Mathematics, Vol. 113, No. 6. (Dec., 1991), pp. 1053-1133.

[7] L.E. Dickson, Linear groups, with an Exposition of the Galois Field Theory, Teubner, Leipzig,
1901.

[8] McQuillan, Donald. Some results on the linear fractional group. Illinois Journal of Mathematics,
Volume 10, Issue 1, 1966.

[9] McQuillan, Donald. On the genus of fields of elliptic modular functions. Illinois Journal of
Mathematics Volume 10, Issue 3, 1966.

[10] Thompson, John. A Finiteness Theorem for Subgroups of PSL2(R) Which are Commensurable
with PSL2(Z). Proceedings of Symposia in Pure Mathematics, 37, pp. 533-555, 1980.

5


