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Abstract

Let G be a semi-simple connected algebraic group over Q and Γ be an arithmetic subgroup of
the group of real points G = G(R). Given a decreasing sequence of arithmetic subgroups {Γn}
of Γ, a recent conjecture has been made by Bergeron and Venkatesh on the limit as n goes to
infinity of log |Hi(Γn,M)tors|

[Γ:Γn]
, where M is a finite rank free Z-module. It is conjectured that the

limit depends on i and the deficiency of G. In this expository paper, we introduce the reader
to the literature concerning this problem, including Reidemeister torsion and analytic torsion,
and recount recent developments made by Müller and others on specific cases of the conjecture.
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1 Introduction

Algebraic groups have long been of interest to mathematicians in a variety of different fields.
Since they can be viewed in an algebraic and topological way, many tools lend themselves to study
their shapes and aid in their classification. In this chapter, we introduce the foundations of algebraic
group theory, which largely follows the material in [9].

We define an algebraic group G to be a variety endowed with the structure of a group, such
that the multiplication map and the inversion map are morphisms of varieties (that is, the maps
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are given locally by polynomials). We define the identity component of G to be the irreducible
component which contains the identity element, and we denote it as G◦. We call an algebraic group
connected if G = G◦.

In this paper, we will be focusing on algebraic groups which are affine varieties, which makes
them linear algebraic groups. These are particularly nice to work with since

Theorem 1.1 ([9] Theorem 8.6): If G is a linear algebraic group, then it is isomorphic to a
closed subgroup (under the Zariski topology) of some GLn(K), where K is an algebraically closed
field.

When K = C, GLn(K) is itself a Lie group, and being a closed subgroup, we can also view G
as a Lie group too. With this perspective, we can view G < GLn(F ) for some field F as a Lie
group whenever the general linear group GLn(F ) is a Lie group.

Let G be an affine algebraic group over the field k; then if we let I(G) denote the ideal of
polynomials f(t1, . . . , tr) ∈ k[t1, . . . , tr] that vanish on G, we define the affine algebra of G to be
k[G] := k[t1, . . . , tr]/I(G). We can define an action of G on k[G] like so; given an element x ∈ G,
the left translation y 7→ xy induces a map (λxf)(y) = f(x−1y) where f ∈ k[G]. We call λx the left
translations of functions by x, and note that it induces a group homomorphism

λ : G→ GL(k[G])

λ : x 7→ λx

One more key notion is that of derivations of k[G]; these are k-linear maps δ : k[G]→ k[G]
such that δ(xy) = δ(x)y + xδ(y) for all x, y ∈ k[G]. It can be shown that these form a Lie algebra
denoted Der(k[G]) where the Lie bracket is defined to be [δ1, δ2] = δ1 ◦ δ2 − δ2 ◦ δ1. With these
definitions in place we can define the Lie algebra of an algebraic group G to be the space of left
invariant derivations

Lie(G) := {δ ∈ Der(k[G]) | δλx = λxδ ∀x ∈ G}

Notice the similarities between this set up and the classical theory of Lie groups and Lie algebras.
In fact, in the same way that Lie groups give rise to Riemannian symmetric spaces, linear

algebraic groups can too. Suppose that G is a semi-simple connected algebraic group over Q, and
K is a maximal compact subgroup of the group of real points G := G(R). Then the quotient
X := G/K can be shown to be a Riemannian symmetric space, that is, a connected Rieman-
nian manifold X such that the isometry group Isom(X) acts transitively and such that there exists
a φ ∈ Isom(X) where φ2 = id and φ has an isolated fixed point [11]. Now when we take subgroups
Γ < G, we are often interested in studying the resulting spaces Γ\X. In particular, the most fruitful
theory comes when we require Γ\X to be compact, or at least have finite volume. When Γ < G is
a discrete group (meaning there is a neighborhood around the identity element of G that doesn’t
intersect Γ), we call it cocompact if the space Γ\G is compact.

Example 1.1: Consider the affine algebraic group G = SL2(R), which can be defined as a
variety by {ad− bc = 1 | a, b, c, d ∈ R}. From the Iwasawa decomposition, we have SL2(R) = KAN
where

K = SO(2), A =
{(

a 0
0 1/a

) ∣∣ a ∈ R>0

}
, N =

{
( 1 n

0 1 )
∣∣n ∈ R

}
Notice that up to homeomorphism, K ∼= S1, A ∼= R>0 and N ∼= R. In particular, notice that
SL2(R) is connected and K is a compact subgroup. As in the general theory, we are interested
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in their quotient; from our decomposition above, it is clear that as groups there are isomorphisms
SL2(R)/ SO(2) ∼= R>0 × R ∼= H, where H = {x + iy |x, y ∈ R} is the complex upper half-plane.
In fact, it can be shown that SL2(R)/ SO(2) ∼= H as a Riemannian symmetric space, and elements
g ∈ SL2(R) act on z = x+ iy ∈ H according to the linear fractional transformation

gz =
az + b

cz + d
=
ac(x2 + y2) + x(ad+ bc) + bd

|cz + d|2
+ i

y

|cz + d|2

Next, we can show that H comes endowed with a G-invariant measure: dxdy
y2 . Let g =

(
a b
c d

)
∈

SL2(R), then we can view gz = u+iv as a change of coordinates (where u and v are defined according
to the equation above), and the Jacobian is equal to det(J) =

(
∂u
∂x

)(
∂v
∂y

)
−
(
∂u
∂y

)(
∂v
∂x

)
. Since the

function az+b
cz+d is holomorphic, it satisfies the Cauchy-Riemann equations, so we can simplify this

expression to det(J) =
(
∂u
∂x

)2
+
(
∂v
∂x

)2
. Using our equations above, and the fact that ad − bc = 1,

we can compute

det(J) =
( (cx− cy + d)(cx+ cy + d)

(c2y2 + (cx+ d)2)2

)2

+
( 2cy(cx+ d)

(c2x2 + c2y2 + 2cdx+ d2)2

)2

=
1

(c2x2 + c2y2 + 2cdx+ d2)2

=
1

|cz + d|4

Let U be a subset of H and g ∈ SL2(R). Then when we recall that v = y
|cz+d|2 , our change of

variables yields ∫ ∫
gU

dudv

v2
=

∫ ∫
U

|cz + d|4

y2
det(J)dxdy =

∫ ∫
U

dxdy

y2

Now consider the discrete subgroup SL2(Z) < G. Although this group is not cocompact, we
can show that SL2(Z)\G/K has finite volume. It is well known that the fundamental domain for
SL2(Z) is

F = {z ∈ H | |z| ≥ 1 and − 1/2 ≤ Re(z) ≤ 1/2}

(see Figure 1), and using the hyperbolic measure we have

vol(SL2(Z)\H) =

∫
x+iy∈F

dµ

=

∫ 1/2

−1/2

∫ ∞
√

1−x2

dxdy

y2

=

∫ 1/2

−1/2

dx√
1− x2

= arcsin(x)
∣∣1/2
−1/2

=
π

3

Finally, using ( 1 1
0 1 ),

(
0 −1
1 0

)
∈ SL2(Z), it can be shown from the action of the linear fractional

transformation that the two vertical segments (from the Euclidean perspective) of F are identified
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Figure 1: Fundamental domain for SL2(Z)

together, and the two segments going from eπi/3 and e2πi/3 to i are identified together. After com-
pactifying the space SL2(Z)\ SL2(R)/SO(2) by adding a point for the cusp at infinity, we get S2.
Likewise, we can consider other finite index subgroups Γ < SL2(Z) and analyze the resulting space
Γ\G/K, which after adding the appropriate cusps is a compact Riemann surface. Studying these
modular curves is itself is an extremely fruitful area of research with ties into modular forms and
elliptic curves (see for instance [5]).

2 The Bergeron-Venkatesh Conjecture

As with the notation of the previous chapter, let G be a semi-simple connected algebraic
group over Q, G be its group of real points, and K < G be a maximal compact subgroup. Then
we define the deficiency of G to be δ(G) = rank(G)− rank(K), where the rank is the dimension
of the maximal tori taken over C. Because it makes sense to talk about the Lie algebra of an
algebraic group, if g and k are the Lie algebras of G(R) and K respectively, then we also have
δ(G) = rank(gC) − rank(kC). This is an equivalent definition because in the theory of linear alge-
braic groups, if G is semi-simple, then the maximal tori are exactly the Cartan subgroups [9].

As an example of computing the deficiency of algebraic groups, notice that rank(SLn(R)) =
n − 1, which can be seen by examining the subgroup of diagonal matrices. A maximal compact
subgroup of SLn(R) is SO(n), whose maximal torus is a block diagonal matrix where the blocks are
2-by-2 rotation matrices. Hence, we have rank(SO(2n)) = rank(SO(2n + 1)) = n and we deduce
that δ(SL2k(R)) = k − 1 and δ(SL2k+1(R)) = k for all k ∈ Z>0.

With all of this notation in place, we are ready to state the main conjecture:
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Conjecture 2.1 ([3] Conjecture 1.3): Let Γ > Γ1 > Γ2 > . . . be a decreasing sequence of co-
compact congruence subgroups of G with ∩nΓn = {1}, and let M be a a finite rank free Z-module
with a Γ-action. Then the limit

lim
n→∞

log |Hi(Γn,M)tors|
[Γ : Γn]

exists for each i and is zero unless δ(G) = 1 and i = dim(G/K)−1
2 , in which case it is equal to a

positive constant times the volume of Γ\G/K.

Bergeron and Venkatesh’s conjecture actually extends further depending on deficiency [3]:
•When δ(G) = 0, the limit should go to zero but H(Γn,M⊗Q) (the non-torsion) should

still be large.
• When δ(G) = 1, there should be a lot of torsion in the homology groups, but
H(Γn,M ⊗Q) should be relatively small.

• When δ(G) > 1, neither the torsion nor the characteristic zero homology should grow
exponentially.

There are numerous motivations for studying these cohomology groups. For one thing, there is a
natural isomorphism between the cohomology of a torsion-free arithmetic subgroup Γ < G and the
cohomology of the associated Riemannian symmetric space G/K. This means that the phenomenon
of torsion in cohomology likely has geometric meaning, which is of interest to differential geometers
and topologists studying these Riemannian manifolds. Secondly, by a theorem of Franke, the co-
homology of an algebraic group can be computed in terms of automorphic forms “of cohomological
type,” [6] hence there is a connection to the Langlands program. Finally, Avner Ash conjectured
that Hecke eigenclasses in the group cohomology of these arithmetic subgroups with coefficients
in Fp corresponds to Galois representations on Fp [1]. This is now a theorem of Scholze [18], and
demonstrates that torsion in cohomology, even if it does not come from the reduction of cohomology
classes with characteristic zero coefficients, has consequences in arithmetic geometry.

With these motivations in mind, Ash, Gunnells, McConnell, and Yasaki proposed an ana-
logue conjecture to the case when Γ is not necessarily cocompact. Recall that the cuspidal range
of an arithmetic group consists of the cohomoloical degrees where cuspidal automorphic forms con-
tribute to the cohomology.

Conjecture 2.2 ([2] Conjecture 7.1): Let Γ be any arithmetic group and {Γn} be an infinite
set of congruence subgroups of increasing prime level. Then

lim
n→∞

log |Hi(Γn,M)tors|
[Γ : Γn]

should tend to the B-V limit when δ(G) = 1 and i is at the top of the cuspidal range.

Example 2.1: As a sanity check, let’s check how the limit above behaves for the alge-
braic group G = SL2(R). A maximal torus of G is

{(
r 0
0 r−1

)
| r ∈ R

}
, and hence rank(G) = 1. As

in Example 1.1, K = SO(2) is a maximal compact algebraic group. It has rank(K) = 1, so we
get δ(G) = 0 and might suspect the limit will be 0 for any choice of i. Consider any torsion-free
congruence subgroup Γ < SL2(Z), which again acts on the upper half-plane. As we saw in Example
1.1, these subgroups are not cocompact, but the spaces Γ\H have finite volume. Then we have
Hi(Γ,M) ∼= Hi(Γ\H,M), where M is the local system induced by M . However, Γ\H deformation
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retracts to a finite graph, so Hi(Γ,M) vanishes for i > 1, and when i = 0, 1 there is no torsion.
Hence, for any congruence subgroup Γn < Γ we have log |Hi(Γn,M)tors| = 0 for any i.

Very few cases of Conjecture 2.1 or 2.2 have been proven. However, Bergeron and Venkatesh
showed that if G = SL2(C) or G = SL3(R), we can find subgroups and a module such that the
limit converges to a positive number at degrees 1 and 2, respectively. In fact, these were corollaries
of a more general theorem that they proved.

Theorem 2.1 ([3] Equation (1.4.2)): Suppose that δ(G) = 1, then we can always find a se-
quence of cocompact arithmetic subgroups {Γn} and a Γ-module M that is strongly acyclic (to be
defined in Chapter 3) such that

lim
n

∑
j

(−1)j+
dim(G/K)−1

2
log |Hi(Γn,M)tors|

[Γ : Γn]
= cG,M vol(Γ\G/K)

where cG,M is a positive constant.

Recently, Müller, Pffaf, and others have proven similar theorems, where a particular algebraic
group is chosen, and cocompact arithmetic subgroups and modules are constructed so that the
alternating sum of the logarithm of the torsion components, as in Theorem 2.1, is nonzero and
related to the volume of the corresponding Riemannian symmetric space. Although these types of
theorems do not isolate which cohomology group grows exponentially, they are impressive theorems
in themselves and provide a large step towards proving Conjecture 2.1. The proofs of these theo-
rems, including Theorem 2.1, hinge on Müller’s work on analytic torsion, which shall be discussed
in the next chapter.

3 Torsion

In this chapter, we introduce Reidemeister torsion and analytic torsion (also known as Ray-
Singer torsion). Müller and Cheeger independently proved that under certain conditions, these two
quantities are equal [4, 14] (see Theorem 3.1 below), which can be exploited to show results relating
to Conjecture 2.1.

3.1 Reidemeister Torsion

In this section, the material and exposition follows sections 2.1 and 2.2 in [3]. Reidemeister
torsion, sometimes called R-torsion, was first introduced by Reidemeister in 1935 to study three
dimensional lens spaces, L(p, q), which are the quotient spaces of S3 modulo the relation (z1, z2) ∼
(e2πi/pz1, e

2πi/qz2) for coprime integers p and q. These were the first known examples of 3-manifolds
whose homeomorphism type is not determined by their homology and fundamental group. However,
Reidemeister showed that three-dimensional lens spaces are classified up to homeomorphism by their
fundamental group and Reidemeister torsion [17]. As we shall see, Reidemeister torsion is largely
a topological invariant rather than an analytic or arithmetic invariant.

Consider a homomorphism of free finite rank Z-modules f : A1 → A2. First we fix an
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embeddings of A1 and A2 into Rn, then find a Z-basis {ai | 1 ≤ i ≤ rank(A1)} for A1, and similarly
for A2 [3]. Then we have the following equivalent definitions of the volume of a module:

vol(A1) = vol(A1 ⊗Z R/A1) =
√
|det(M)| = ||a1 ∧ . . . ∧ an||

where M is the Gram matrix for our basis. Next, we define det′(f) =
∏rank(Ai)
i=1 σi where {σi} is

the set of nonzero singular values of f , that is, each σi =
√
λi where λi is a positive eigenvalue of

ffT . With these definitions, we have

vol(A1)det′(f) = vol
(

ker(f)
)

vol
(

im(f)
)

(∗)

Suppose that we are given a cochain complex of free finite rank Z-modules

0→ A0 d0−−→ A1 d1−−→ . . .
dn−1−−−−→ An

dn−−→ 0

where vol(Ai) = 1 for each i. Notice that if each Hi(A∗) is finite, im(di−1) is a sublattice of ker(di),

and we have |Hi(A∗)| = [ker(di) : im(di−1)] = vol(im(di−1))
vol(ker(di))

by (∗). In general, if the homology

group is not finite, we have a “regulator” factor Ri(A∗) := vol(Hi(A∗)free) which makes

vol(ker(di))

vol(im(di−1))
= |Hi(A∗)tors|−1Ri(A∗)

Furthermore, if the cochain complex A∗ is exact, meaning that each homology group is trivial, then
we call the cochain complex acyclic. With these definitions in place, we define the Reidemeister
torsion of A∗ be

τA(d) :=

n∏
i=0

(
det(di)

)(−1)i

=

n∏
i=0

|Hi(A∗)|(−1)i+1

tors Ri(A∗)(−1)i

where the second equality can be seen directly be substituting the equations we’ve written above.
When the cochain complex is induced by a representation ρ, which will be our primary concern for
the rest of the paper, we will denote the Reidemeister torsion as τA(ρ).

Example 3.1: Consider the complex of free Z-modules

0→ A0 d0−→ A1 → 0

where A0 ∼= Z2, A1 ∼= Z2, and d0 =
(
k2 −k
−k 1

)
. Then we imbed each copy of A0 and A1 into R2

using the standard basis
{

( 1
0 ), ( 0

1 )
}

, and notice that the Gram matrix for each module is now the
identity, so we’ve normalized in the sense that vol(A0) = vol(A1) = 1.

The rank of d0 is 1, so already we can see that H0(A∗) ∼= H1(A∗) ∼= Z, and hence the
torsion components have cardinality 1. The image of d0 is spanned by

{(−k
1

)}
, so we compute

that vol
(

im(d0)
)

=
√〈(−k

1

)
,
(−k

1

)〉
=
√
k2 + 1. Likewise, the kernel of d0 is spanned by

{
( 1
k )
}

so vol
(

ker(d0)
)

=
√
k2 + 1. Next, we compute the eigenvalues of d0d

T
0 and find them to be 0 and

(k2 + 1)2, and hence det′(d0) = k2 + 1. Notice that this is consistent with our equations above.
Finally, we can compute

R0(A∗) = vol
(

ker(d0)
)

=
√
k2 + 1 and R1(A∗) =

1

vol
(

im(d0)
) =

1√
k2 + 1

and hence the Reidemeister torsion of our complex is τA(d) = k2 + 1.
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3.2 Analytic Torsion

The material and exposition in this section follows [8]. First let us recall some definitions
from differential geometry. Given a vector bundle π : E → X where the fibers are vector spaces
V n, we have local trivializations φA : A×V n ∼−→ π−1(A) for small open subsets A ⊂ X. Given two
open neighborhoods A,B ⊂ X we have the composition function

φ−1
A ◦ φB : (A ∩B)× V n → (A ∩B)× V n

φ−1
A ◦ φB : (x, v)→ (x, gAB(x)v)

which defines the map gAB : A ∩ B → GLn(V ) called the transition function. When E admits
an open covering and local trivializations such that the transition functions are locally constant,
we call E a flat vector bundle.

Now we will explain how analytic torsion is defined. Let X be an n-dimensional compact
Riemannian manifold and ρ : π1(X) → GLn(V ) be a finite dimensional representation of the
fundamental group of X. Given the universal cover X̃ of X, we can consider the trivial vector
bundle π : X̃ × V n → X̃. This is flat because we can choose our transition functions to be the
identity, which causes each transition function to map its domain to the identity matrix. Consider
the action of π1(X) on X̃ × V n defined by

γ · (x̃, v) =
(
γx̃, (ρ(γ))(v)

)
where γx̃ is the action of π1(X) on X̃ via deck transformations. Let ∼ be the equivalence relation
formed by the action above, and recall that X ∼= X̃/π1(X). By defining Eρ := (X̃ × V n)/ ∼, we
can construct the flat vector bundle associated to ρ

πρ : Eρ → X

In fact, there is a bijection between the flat vector bundles of rank n over X and the n-dimensional
representations of the fundamental group π1(X) [8].

Because Eρ is a flat vector bundle, there is a natural way of taking the exterior derivatives
of differential forms on X with values in Eρ. If {ei} is a basis for Eρ, then we define the exterior
derivative to be the usual exterior derivative acting component-wise. From the standard theory of
differential geometry, we have the de Rham complex of differential forms with values in Eρ

0→ Ω0(X,Eρ)
d0−→ Ω1(X,Eρ)

d1−→ . . .
dn−1−−−→ Ωn(X,Eρ)→ 0

Like the standard theory, we have the notion of the Hodge star operation. Using multi-index
notation, consider a differential p-form ω =

∑
I fIei. Then the Hodge dual is defined to be

∗ω =
∑
I,J

ε(IJ)fIeJ

where I ∪ J = {1, . . . , n}, I ∩ J = ∅, and ε(IJ) is the sign of the permutation of the sequence
(1, . . . , n) to (I, J). For example, if our 0-form takes values in Rn, then ∗f = fdx1∧dx2∧ . . .∧dxn.
Similarly, in R3 the Hodge dual of a general 1-form is

∗(f1dx1 + f2dx2 + f3dx3) = f1dx2 ∧ dx3 − f2dx1 ∧ dx3 + f3dx1 ∧ dx2
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If we are considering differential forms on a smooth manifold with dimension n, then we define the
codifferential map on a p-form to be

δ = (−1)n(p+1)+1 ∗ d∗

Notice that the codifferential takes p-forms to p − 1-forms. Our space of differential forms with
compact support comes equipped with a natural inner product 〈α, β〉 =

∫
X
α∧ ∗β, and one special

property of the codiffernetial is the adjunction formula 〈dα, β〉 = 〈α, δβ〉 and 〈δα, β〉 = 〈α, dβ〉,
which can be proved using Stokes’ theorem. With this, we define the Hodge Laplacian on p-
forms to be

∆ = δd+ dδ

and to specify the Hodge Laplacian acting on p-forms, we write ∆p. Notice that the adjunction
formula above implies that ∆ is self-adjoint in the sense that 〈∆α, β〉 = 〈α,∆β〉. Now let {λi}i∈I
be the set of eigenvalues of ∆p, counted with multiplicity. We define the p-th zeta function to be
the complex function

ζp(s) =
∑
λi≥0

λ−si

for the values of s for which the expression exists.
Now we are ready to define analytic torsion; given a closed Riemann manifold X of dimension

n with vector bundle Eρ as established above, we define the analytic torsion TX(ρ) to be

ln
(
TX(ρ)

)
=

1

2

∑
i≥0

(−1)ii
d

ds

∣∣∣
s=0

ζi(s)

As it is defined above, it isn’t clear whether or not the i-th zeta function converges. However, we
have

Proposition 3.1 ([7] Lemma 1.10.1): ζp is holomorphic for s ∈ C with Re(s) > p/2. Furthermore,
it has an analytic continuation to a meromorphic function on C which is analytic at 0.

Proof: For any self adjoint differential operator O we set

ζO(s) = Tr(O−s) =
∑
i

λ−si

where λi are the eigenvalues of O. With a slight abuse of notation, we will set ζp(s) := ζ∆p
(s), and

from noting the identity∫ ∞
0

ts−1e−λt dt = λ−s
∫ ∞

0

(λt)s−1e−λt d(λt) = λ−sΓ(s)
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we have ∫ ∞
0

ts−1 Tr(e−t∆p) dt =

∫ ∞
0

ts−1
∑
i

(eλi)−t dt

=
∑
i

∫ ∞
0

ts−1e−tλi dt

=
∑
i

λ−si Γ(s)

= ζp(s)Γ(s)

where we are using the fact that the eigenvalues of e∆p are precisely eλi where λi are the eigenvalues
of ∆p. Hence, we have the expression

ζp(s) =
1

Γ(s)

∫ ∞
0

ts−1 Tr(e−t∆p) dt

Further study of this function (as in [7]) shows that the expression above is holomorphic when
Re(s) > p

2 , and has a meromorphic analytic continuation to C with possible simple poles at (p−k)/2
for k = 0, 1, 2, . . ..

Example 3.2: Let’s compute the analytic torsion of a circle X = S1. To make things sim-
pler, we take S1 ∼= R/Z and consider the one-dimensional trivial representation of the fundamental
group. This in turn induces the one-dimensional trivial vector bundle Eρ. Since the circle is one
dimensional, we get the sequence of differential forms

0→ Ω0(S1, Eρ)→ Ω1(S1, Eρ)→ 0

and the formula for analytic torsion implies that we only need to compute ζ1(s). By definition, we
have d(f) = f ′ dt and d(f dt) = 0. Likewise, the Hodge star sends ∗(f) = fdt and ∗(f dt) = f .
Hence, the codifferential operator acts by

δ(f dt) = (− ∗ d∗)(f dt) = −f ′

and the Laplacian is
∆1(f dt) = (dδ + δd)(f dt) = −f

′′
dt

The eigenvectors of ∆1 are spanned by {cos(nt)dt, sin(nt)dt, cdt} where n ∈ Z>0 and c ∈ C.
These three families correspond to the eigenvalues {n2, n2, 0}, respectively. This implies that

ζ1(s) = 2
∑
n≥1

(n2)−s = 2ζ(2s)

where ζ(s) is the standard zeta function. Notice that ζ1(s) is hence a meromorphic function with
a single simple pole at s = 1/2, which agrees with our result from Proposition 3.1. Using the fact
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that lims→0 ζ
′(s) = − ln(2π)

2 , we can compute

ln
(
TS1(ρ)

)
=

1

2

∑
n≥0

(−1)nn
d

ds

∣∣∣
s=0

ζn(s)

=
1

2
(−1)

d

ds

∣∣∣
s=0

ζ1(s)

= lim
s→0
−2ζ ′(2s)

= ln(2π)

so our analytic torsion is 2π.

3.3 R-Torsion from Arithmetic Groups

The material and exposition in this section follows section 2 of [15]. Suppose we want to
compute the group cohomology Hi(Γ,M) of a torsion-free arithmetic group Γ < G, where M is a
free, finite rank Z-module with a Γ-action. We start by constructing the Riemannian symmetric
space X̃ = G/K as we saw in Chapter 1. Then we can construct the Eilenberg-MacLane space
X = Γ\X̃, which is a connected smooth manifold of dimension n with π1(X) = Γ. Since X is
smooth, we can construct a triangulation L, which lifts to a triangulation L̃ of X̃. We can work
with the free abelian groups Ci(L,Z), Ci(L̃,Z), and Ci(L̃,Z) = HomZ

(
Ci(L̃,Z),Z

)
. However, we

want to work with M coefficients instead of Z.
From the homeomorphism X ' Γ\X̃, we know that the i-cells of L form a basis for Ci(L̃,Z)

over Z[Γ]. Viewing M as a Z[Γ]-module, we can define

Ci(L,M) := Ci(L̃,Z)⊗Z[Γ] M ∼= HomZ[Γ]

(
Ci(L̃,Z),M

)
This cochain complex gives us an isomorphism of homology groups

Hi(L,M) ∼= Hi(Γ,M)

for all i. We can consider the module V := M ⊗Z C and the cochains

Ci(L, V ) := Ci(L̃,Z)⊗Z[Γ] V ∼= Ci(L,M)⊗Z C

We now define a representation ρ : Γ → GL(M) to be unimodular if |det(γ)| = 1 for all
γ ∈ Γ. Since M is a Z-lattice, for any representation ρ on M, the determinant of the image of
any γ ∈ Γ must be an integer. However, since ρ is a homomorphism, we must have |det(γ)| = 1.
Furthermore, we can regard ρ as a unimodular representation of Γ on V .

As in the previous section, let E := X̃×ρ V be the flat vector bundle over X associated to ρ.
Then we can compute the de Rham cohomology groups Hi(X,E) of complex E-valued differential
forms on X. From the de Rham isomorphism, we get that Hi(L, V ) ∼= Hi(X,E) for all i. Notice
that so far, we have not imposed any restrictions on our module M , besides it being a free finite
rank Z-module. Now, we call M and ρ acyclic if the sequence

. . . −→ Ci(L,M)⊗Z C di−−→ Ci+1(L,M)⊗Z C −→ . . .

11



is acyclic. Recall that this means the cohomology groups Hi(L, V ) ∼= Hi(X,E) ∼= 0 are trivial for
all i. As a consequence, we can show that each Hi(Γ,M) must be finite.

By the Universal Coefficient theorem for cohomology, we know that

0 ∼= Hi(L, V ) ∼= Ext1
Z(Hi−1(L,Z), V )⊕HomZ(Hi(L,Z), V )

where we are considering V as a Z-module. Notice that Ext1
Z(Hi−1(L,Z), V ) ∼= 0 since V is an

injective Z-module. This implies that Hi(L,Z) must be finite for each i, or else we could find a
nontrivial homomorphism from it to V .

Now suppose that M has rank n, then the Universal Coefficient theorem for homology implies
that

Hi(L,M) ∼=
(
Hi(L,Z)⊗Z M

)
⊕ Tor1(Hi−1(L,Z),M)

∼=
n∏(

Hi(L,Z)⊗Z Z
)
⊕ 0

∼= Hi(L,Z)n

where we have used the fact that M is a flat Z-module (because it is free) so the Tor term is 0.
This means that Hi(L,M) must be finite, and by Poincaré duality for torsion, we get that

Hi(Γ,M) ∼= Hi(L,M) ∼= Hn−i−1(L,M) ∼= Hn−i−1(Γ,M)

and hence Hi(Γ,M) is finite for all i.
The following proposition gives the connection between Reidemeister torsion and the torsion

in the group cohomology of arithmetic groups.

Proposition 3.2 ([15] Proposition 2.1): Given the setting above, where ρ : Γ → GL(M) is an
acyclic representation of Γ on a free finite rank Z-module,

ln
(
τX(ρ)

)
=

n∑
i=0

(−1)i+1 ln
(
|Hi(Γ,M)|

)
Proof: The majority of the proof has already been finished above. Since the cohomology groups

Hi(Γ,M) are finite, we compute the Reidemeister torsion of the cochain complex

. . . −→ Ci(L̃,Z)⊗Z[Γ] M
di−−→ Ci+1(L̃,Z)⊗Z[Γ] M −→ . . .

and take the logarithm to get

ln
(
τX(ρ)

)
=

n∑
i=0

(−1)i ln
(

det(di)
)

=

n∑
i=0

(−1)i+1 ln
(
|Hi(Γ,M)|

)

When ρ is acyclic, Proposition 3.2 provides a bridge between the group cohomology and
R-torsion, which is what Bergeron and Venkatesh exploited to prove Theorem 2.1. The problem
is that Reidemeister torsion is kind of clunky to work out explicitly—there isn’t an easy way to
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see how it grows. This is where the connection between analytic torsion and Reidemeister torsion
comes into play. Independently of each other, Cheeger and Müller proved

Theorem 3.1 ([4, 12]): When ρ is a unitary representation, TX(ρ) = τX(ρ).

where a unitary representation ρ : Γ → GL(M) is one where ρ(γ) is unitary for every γ ∈ Γ.
Müller later generalized this result by showing

Theorem 3.2 ([13] Theorem 1.1): When ρ is a unimodular representation, TX(ρ) = τX(ρ).

Combined with Proposition 2.1, this result implies that we are able to study the group cohomology
of arithmetic subgroups with analytic means by examining analytic torsion. This is exactly what
Bergeron and Venkatesh did to prove Theorem 2.1, though they imposed the stricter requirement
that the Γ-module M be strongly acyclic, meaning the eigenvalues of every ∆p for any choice of
Γn < Γ are uniformly bounded away from 0. At first, it may be surprising that strongly acyclic
modules exist, or even that acyclic modules exist. However, part of Theorem 2.1 was showing
that we can construct such modules for any algebraic group with deficiency equal to 1. For exam-
ple, when considering the algebraic group SL2(C) (which has deficiency 1), the SL2(Z[i])-module
Symp(Z[i]2)⊗Z Symq(Z[i]2) is acyclic if and only if p 6= q [3]. However, Theorem 2.1 and Conjecture
2.1 do not apply becuase the lattice SL2(Z[i]) is not cocompact.

4 From Analytic Torsion to the B-V Conjecture

4.1 From Subgroups to Modules

When Bergeron and Venkatesh first proposed their conjecture, they fixed a finite rank free
Z-module M , and studied the growth of the torsion in Hi(Γn,M) when passing through a decreas-
ing sequence of cocompact congruence subgroups . . . ⊂ Γn ⊂ . . . ⊂ Γ where ∩nΓn = {1}. In work
done by Müller and Pfaff, they fix the arithmetic group Γ and study the torsion of Hi(Γ,Mn)
for a sequence of Γ-modules {Mn}. In both cases, the theorems they prove make use of modules
with unimodular representations so as to utilize Theorem 3.2 [13] relating the torsion in the group
cohomology with the analytic torsion. Here, we will highlight the correspondence between these
two approaches.

Proposition 4.1: Let H be a finite index subgroup of G. If ρ : H → GL(V ) is a unimodular
representation, then the induced representation ρ̃ : G→ GL

(
IndGH(V )

)
is also unimodular.

Proof: Let [G : H] = n and pick coset representatives g1, . . . , gn. By definition, our module is
defined by CoIndGH(V ) = {f : G→ V | f(hg) = ρ(h)

(
f(g)

)
} and the action of G on it is defined by

ρ̃ :G× CoIndGH(V )→ CoIndGH(V )

ρ̃ :
(
g∗, f(g)

)
7→ f(gg∗)

Since any g ∈ G can be written as g = gihi for one of our coset representatives gi and hi ∈ H,
a map f ∈ IndGH(V ) is completely determined by where it sends each coset rep. If we fix a basis
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{v1, . . . , vm} for V , the space IndGH(V ) is thus spanned by maps fi,j which send fi,j(gi) = vj , and
which are zero on all other coset reps. From this, we confirm that IndGH(V ) has dimension nm.

If we focus on how our action affects these basis members, we see that

ρ̃ :
(
gi, fj,k

)
= fl,k where gjgi ∈ glH

Hence if we let ρ(y) = 0 for all y /∈ H, then we can express

ρ̃(x) =

ρ(g−1
1 xg1) . . . ρ(g−1

1 xgn)
...

. . .
...

ρ(g−1
n xg1) . . . ρ(g−1

n xgn)


Notice that each ρ(g−1

i xgj) is an m-by-m matrix. Furthermore, each xgj belongs to a distinct
coset of G/H, and hence there is exactly one coset rep gi such that g−1

i xgj ∈ H (which makes
ρ(g−1

i xgj) 6= 0). That is, there is exactly one non-zero block matrix in each column. By the same
reasoning, there is exactly one non-zero block matrix in each row.

By rearranging the rows of ρ̃(x), we can get a diagonal block matrix which has the same
determinant as ρ̃(x), up to sign. However, notice that each ρ(g−1

i xgj) has determinant 1 because ρ
is unimodular. Since the determinant of a block diagonal matrix is the product of the determinants
of its blocks, we get |ρ̃(x)| = 1. Finally, since H has finite index in G, the coinduced and induced
representations coincide, and hence our induced representation is unimodular.

Let Γ < G be an arithmetic subgroup of a semi-simple connected algebraic group over Q.
Given a finite rank free Z-module M , suppose there exists a decreasing sequence of congruence
subgroups {Γn}∞n=1 such that |Hi(Γn,M)|tors grows exponentially. As we explained in Chapter 3,
M must be unimodular, and since each Γn is of finite index in Γ, Shapiro’s Lemma implies that

Hi(Γn,M) ∼= Hi
(
Γ, IndΓ

Γn
(M)

)
By Proposition 4.1, each induced representation is unimodular, and hence a sequence of subgroups
yields a sequence of modules with unimodular representations which cause the cohomology to grow
exponentially.

With all of this in place, it makes sense to focus on varying the modules instead of the
subgroups, because we can still utilize Theorem 3.2. In fact, this is largely what has been done in
the literature so far. For instance Müller and Pfaff [15] constructed certain torsion-free cocompact
arithmetic groups Γ of SO0(p, q) for p, q odd, and showed that there exists modules Mm for each
m ∈ N such that

lim
m→∞

∑
i

(−1)i log |Hi(Γ,Mm)tors| = −Cp,q vol(Γ\X̃)m rankZ(Mm) +O(rankZ(Mm))

Notice that this implies there exists at least one i such that |Hi(Γ,Mm)tors| grows exponentially,

however it is still conjectural that the cohomological degree which does so is i = dim(X̃)+1
2 . In the

same paper, Müller and Pfaff proved a similar result for the algebraic group SL3(R) and certain
cocompact subgroups Γ.
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4.2 Algebraic Groups with δ 6= 1

Most of the research concerning Conjecture 2.1 that has been published has focused on cases
when the deficiency is equal to one, which includes SL2(C), SL3(R), SL4(R), and SO(p, q) where
pq is odd. However, for Conjecture 2.1 to be complete, it still needs to be shown that little torsion
appears in cases when the deficiency isn’t equal to one. Towards this goal, there have been several
results, for instance,

Theorem 4.1 ([16] Theorem 2.3): Suppose X is an even-dimensional oriented compact mani-
fold without boundary and ρ a finite dimensional representation of π1(X), then TX(ρ) = 1.

If G/K has even dimension (for instance G = SU(p, q) or G = SO(p, q) with pq even, both of which
are examples when δ(G) = 0), then any cocompact lattice Γ < G will share the property above of
having trivial analytic torsion. This can be seen as a manifestation of the Poincaré duality; suppose
X has dimension n and M is a finite rank free Z-module, then there are isomorphisms which result
in |Hi(Γ,M)tors| = |Hn−i−1(Γ,M)tors| and Ri(A

∗)Rn−i(A
∗) = 1 (where A is the cochain complex

derived in Section 3.3). Since the representation associated to M will be unimodular, Theorem 3.2
gives us

TX(ρ) = τx(ρ) =

n∏
i=0

|Hi(A∗)|(−1)i+1

tors Ri(A∗)(−1)i = Ri/2(A∗)

which can be shown to equal 1.
Likewise, we have the following theorem due to Müller and Pfaff

Theorem 4.2 ([14] Theorem 1.1): Suppose G = G(R) is semi-simple with finite center and of
non-compact type. If X = G/K is even dimensional or δ(G) 6= 1, then TX(τ) = 1 for all finite-
dimensional representations τ of G.

Suppose that X is odd dimensional and δ(G) 6= 1 (for instance SLn(R) for certain n ≥ 5). If
ρ is an acyclic representation defined by the restriction of a finite dimensional representation of G
to a cocompact Γ, then Proposition 3.2 and the theorem above imply

0 = ln(TX(ρ)) = ln(τX(ρ)) = (−1)
n+1
2 |H

n−1
2 (Γ,M)|

However, there is no reason to assume that many representations of Γ would be acyclic (recall that
acyclic representation result in each cohomology group Hi(Γ,M) being finite), or that ρ should be
a restricted representation of G.

5 Appendix A

Throughout this paper, we have been interested in how torsion behaves in the homology of
a sequence of subgroups of an algebraic group. The counterpart to this question is how the rank of
these homology groups behaves asymptotically, which slightly more is known about. For instance,
consider a lattice Γ (not necessarily cocompact) in a semisimple Lie group G, and the Riemannian
space Y = Γ\G/K. Let Ωp(Y ) denote the C∞ p-forms on Y and L2(Y ) be the completion of
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Ωp(Y ) with respect to the L2-metric. Setting Ωp(2)(Y ) := Ωi(Y ) ∩ L2(Y ), we can consider the

cochain complex

0 −→ Ω0
(2)(Y )

d−→ Ω1
(2)(Y )

d−→ Ω2
(2)(Y )

d−→ . . .

where d is the exterior differential with domain {α ∈ Ωi(2)(Y ) | dα ∈ L2(Y )}. The cohomology of

this complex is called the L2-cohomology, and Wolfgang Lück showed that given a decreasing
sequence of subgroups Γ > Γ1 > Γ2 > . . . with trivial intersection, the quotient

lim
n→∞

dimHi(Γn,C)

[Γ : Γn]

converges to the ith L2-Betti number of Y [10]. Furthermore, it can be shown that this implies the
limit is nonzero only when the deficiency of G is zero.

As an explicit example, consider again G = SL2(R) (which we showed in Chapter 2 has
deficiency zero) and the lattice Γ = SL2(Z). Let K = SO(2) be the maximal compact subgroup of
G, and X = G/K be the resulting symmetric space. Consider a sequence of congruence subgroups
Γ > Γ1 > Γ2 > . . . with trivial intersection, then since we are considering coefficients in a field, we
can identify the homology groups

Hi(Γn,C) ∼= Hi(Γn\X,C)

for all i and n.
Recall that the principal congruence subgroup of level N , denoted Γ(N), is defined as the

kernel of the map SL2(Z) → SL2(Z/NZ) which reduces each entry modulo N . The properties
of principal congruence subgroups have been well-studied. For instance [19], we know that the

number of cusps for Γ(N) is equal to N2

2

∏
p|N (1− 1

p2 ) and the genus of X(N), the compactification

of Γ(N)\X, is 1 + N2(N−6)
12

∏
p|N (1− 1

p2 ). One can show using the identification space of a genus g
surface that the fundamental group of a genus g surface with k punctures is the free group generated
by 2g + n − 1 elements. Therefore, since the non-compact space Y (N) = Γ(N)\X will have the
same genus as X(N) and a puncture for every cusp, we can compute

Hi

(
Γ(N),C

) ∼=

C i = 0

Cφ(N) i = 1

0 i ≥ 2

where φ(N) =
N2(N − 3)

6

∏
p|N

(
1− 1

p2

)

Because there are only finitely many congruence subgroups of any given level, the level of
the nth congruence subgroup in our sequence must go to infinity as n increases. Also notice that
our sequence of subgroups implies that the lower levels must divide any higher levels. That is, if
N1 is the level of Γn and N2 is the level of Γm where m > n, then N1|N2. Our goal will be to use
the homology of principal congruence subgroups, which are easy to compute explicitly, to compute
the homology of each Γn by using spectral sequences.

Pick any subgroup Γn in our sequence, and suppose it has level N . The Lyndon-Hochschild-
Serre spectral sequence is a spectral sequence of homological type

Hp

(
Γ/Γ(N), Hq(Γ(N),C)

)
=⇒ Hp+q(Γ,C)
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Then the E2 page will take the form

...
...

...

2 H0

(
Γ/Γ(N), H2(Γ(N),C)

)
H1

(
Γ/Γ(N), H2(Γ(N),C)

)
H2

(
Γ/Γ(N), H2(Γ(N),C)

)
. . .

1 H0

(
Γ/Γ(N), H1(Γ(N),C)

)
H1

(
Γ/Γ(N), H1(Γ(N),C)

)
H2

(
Γ/Γ(N), H1(Γ(N),C)

)
. . .

0 H0

(
Γ/Γ(N), H0(Γ(N),C)

)
H1

(
Γ/Γ(N), H0(Γ(N),C)

)
H2

(
Γ/Γ(N), H0(Γ(N),C)

)
. . .

0 1 2 3

From the Third isomorphism Theorem, Γ/Γ(N) is isomorphic to a subgroup of SL2(Z/NZ), and
in particular is a finite group. From the study of homological algebra, we know that the integral
homology (for i > 0) of a finite group is all torsion [20], which means that taking C coefficients will
kill the group, so we have Hi(Γ/Γ(N),C) ∼= 0 for all i > 0. Our E2 page then becomes

...
...

...

2 0 0 0 . . .

1 Cφ(N) 0 0 . . .

0 C 0 0 . . .

0 1 2 3

and hence dimH1(Γn,C) = φ(N).
Now suppose that the subgroups in our sequence {Γn}n∈Z tend to get sufficiently close to

the principal congruence subgroup that they contain. That is, if [Γ : Γn] ∼ [Γ : Γ(N)] as n (and
hence N) go to infinity, then since [Γ : Γ(N)] = N3

∏
p|N
(
1− 1

p2

)
, we get the non-zero converging

limit

lim
n→∞

dimH1(Γn,C)

[Γ : Γn]
=

1

6
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