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Abstract

In this paper, we will present a short exposition of the first and second major theorems in Jean-
Pierre Serre’s Géométrie Algébrique et Géométrie Analytique, as well as the background needed
to understand it. We will assume that the reader is familiar with basic algebraic geometry,
such as that found in Qing Liu’s Algebraic Geometry and Arithmetic Curves.
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1 Complex Analytic Spaces

First we need to introduce the concept of a complex analytic space, which generalizes complex
manifolds to allow for singularities. Throughout this section let U ⊂ Cn, and HU be the sheaf of
holomorphic functions on U . We define an affine complex analytic space to be a locally ringed space
(X,HX) such that

X = V (f1, . . . , fk) = {x ∈ U | f1(x) = . . . = fk(x) = 0}

for some holomorphic functions fi on U . We define its coherent structure sheaf HX as follows; let
I be the coherent sheaf of ideals associated to the functions fi, and then using the inclusion map
ι : X → U , we set HX := ι−1

(
HU/I

)
to be the inverse image. Recall that on the stalks, we have

the nice property HX,x = HU,x/(f1, . . . , fk) for all x ∈ X, and we call HX,x the ring of germs of
holomorphic functions.

Using this, we define more generally a complex analytic space to be a locally ringed, sepa-
rated space (X,HX) with an open cover {Vi} of X such that each (Vi,HX |Vi

) is an affine complex
analytic space. Given two analytic sets U ⊂ Cr and V ⊂ Cr′ , a map φ : U → V is an analytic
holomorphism if it is continuous, and for every f ∈ HV,φ(x), we have f ◦φ ∈ HU,x. Furthermore, we
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say φ is an analytic isomorphism if it is holomorphic and has a holomorphic inverse φ−1. Adding
one more to our list of definitions, we define an analytic sheaf F on a complex analytic space X to
be a sheaf of modules over the sheaf of rings HX

Now that our definitions are out of the way, we are ready to start proving results.

Propostion 1: The sheaf HX is a coherent sheaf of rings.

Proof: Since our proposition is local, we may reduce to the case where X is a closed subset of
an open U ⊂ Cn. By the Oka coherence theorem, we know that the sheaf of holomorphic functions
over a complex manifold is coherent, which implies that HU is a coherent sheaf of rings. This is
explained in [5] (who directs the reader to [3] for a proof which is too long to write out here). Then
since HU is a coherent sheaf of rings and I is a coherent sheaf of ideals, Theorem 3 of Section 16
in [5] implies that HX is a coherent sheaf of rings.

Note that we know the structure sheaf of a ringed topological space is always quasi-coherent,
but it’s not necessarily coherent (viewed as a module over itself). Indeed, the main obstruction
keeping the structure sheaf from being coherent is when its stalks aren’t noetherian. This can be
seen in part from Proposition 1.11 of [4], which implies that the structure sheaf of a locally noethe-
rian scheme is coherent. Coinciding with this and Proposition 1, we can show that the structure
sheaf for complex analytic spaces has Noetherian stalks.

To see this, first consider the case when X = Cn. Then for any x ∈ Cn, the stalk
HCn,x = C{x1, . . . , xn} is the ring of formal power series that converge in a neighborhood of x.
To show that this is noetherian we will proceed by induction on n; for the base case there is nothing
to show since any field is noetherian. Now suppose we know C{x1, . . . , xn−1} is noetherian. By
the Weierstrass preparation theorem, we can write any element in C{x1, . . . , xn} as a unit times
an element in C{x1, . . . , xn−1}[xn], which means that by Hilbert’s basis theorem and our inductive
hypothesis, we can conclude our claim. In general, the ring of germs of holomorphic functions on
a complex analytic space takes the form C{x1, . . . , xn}/I for some ideal I. This is still noetherian
since quotients of noetherian rings are also noetherian, so we can conclude that HX is noetherian
at its stalks.

2 Analytification

Given some scheme X of finite type over C, we would like to associate to it a complex analytic
space, which we will denote by Xan. In the affine case, this is clear; we associate the scheme X =
Spec

(
C[x1, . . . , xn]/(f1, . . . , fk)

)
= Spec

(
C[x1, . . . , xn]/I

)
with the space Xan = V (f1, . . . , fk),

which inherits a topology induced from the standard topology on Cn, as well as the structure sheaf
described above. As a set, Xan is the maximal ideals of X, which correspond to the C-rational
points of our scheme, commonly denoted as X(C). As for the sheaf, we define HXan to be the sheaf
generated on each stalk by HX,x/IHX,x.
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Intuitively, the analytification of a scheme is how we typically “visualize” the scheme, and
we’d like to consider it as if it were a manifold except possibly with singularities. In general, if X
is a scheme, we take an open affine cover, glue together the corresponding affine complex analytic
space, an obtain a complex analytic space, (Xan,HXan), which we call the analytification of X.

It’s important to note that the analytic topology on Xan is finer than the Zariski topology
on X. This is because a subset of Cn is closed under the Zariski topology if it is the zero set of
some finite number of polynomials, and these sets are also closed under the standard topology.

We also want an analytificiation of sheaves so that we can pullback sheaves on X to get
sheaves on Xan. We will do so in the following way; consider the continuous inclusion map
φ : Xan → X and a sheaf F on X. Using this, we set Fan := φ−1F ⊗φ−1OX

HXan which is a
sheaf of HXan -modules, and therefore an analytic sheaf.

Propostion 2: The functor which sends F to Fan is exact. Also, if F is a coherent algebraic
sheaf, then Fan is a coherent analytic sheaf.

Proof: For the first part, suppose that 0 → F1 → F2 → F3 → 0 is a short exact sequence
of sheaves on X. By Proposition 2.2.18 of [4], we know that a sequence of sheaves is exact if
and only if it is exact at all of the stalks. In our case, the stalks of each Fi,x are equal to the
stalks (φ−1Fi)x for any x ∈ Xan. Therefore applying the proposition above twice, we get that
0→ φ−1F1 → φ−1F2 → φ−1F3 → 0 is exact.

It can be shown (Corollary 3 of [6]) that (OX,x,HXan,x) is a flat couple, but we will admit
the proof here because it relies on Propositions 3, 22, 23, 27, and 28 in [6]. With this principle, we
get that

φ−1F1 ⊗φ−1OX
HXan −−→ φ−1F2 ⊗φ−1OX

HXan −−→ φ−1F3 ⊗φ−1OX
HXan

is exact from our reasoning above, and we can conclude our first claim.
Now to show the second part, if we let OnX denote the direct sum of n copies of OX , then

since F is coherent, locally there exist integers p and q such that OqX → O
p
X → F → 0 is an exact

sequence. Note that by definition, Oan
X = HXan , and the first part of this proposition implies that

locally we have an exact sequence HqXan → HpXan → Fan → 0, which shows that our analytic sheaf
is quasi-coherent.

If we denote the map from HqXan to HpXan by α, then we get a short exact sequence 0 →
im(α) → HpXan → coker(α) → 0. Proposition 1 implies that HpXan is coherent, and we know
that the image of a morphism between coherent sheaves is also coherent. Finally, noting that
coker(α) ∼= Fan, we can evoke Theorem 1 in Section 13 of [5]; this theorem states that in a short
exact sequence of sheaves, if two sheaves are coherent, then so is the third, so we can conclude that
Fan is coherent.

Before we dive into proving the first major theorem of GAGA, we need one more tool which
will allow us to simplify the situation later. Suppose that X is a subvariety, closed under the Zariski
topology, of an algebraic variety Y . If F is a coherent algebraic functor on X, then we can consider
its extension by the zero functor by setting FY to be the functor which is F on X and 0 on Y rX.
Likewise, we can consider the analytic sheaf (Fan)Y to be the extension of Fan to a functor which
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is 0 on Y an rXan.

Propostion 3: Using the notation from directly above, we have a canonical isomorphism
between (Fan)Y and (FY )an.

Proof: By definition, the two sheaves are zero outside of Xan, so it suffices to show that their
restrictions to Xan are isomorphic. For any x ∈ Xan, we have

(Fan)Yx = Fx ⊗OX,x
HX,x and (FY )anx = Fx ⊗OY,x

HY,x

SinceHX,x = HY,x/I for an ideal I, we also have OX,x = OY,x/I so there is a canonical isomorphism
HX,x ∼= HY,x ⊗OY,x

OX,x. By the associativity and commutative of the tensor product, we have

(Fan)Yx
∼= Fx ⊗OX,x

HY,x ⊗OY,x
OX,x

∼= (Fx ⊗OX,x
OX,x)⊗OY,x

HY,x
∼= (FY )anx

We’ve now shown that (Fan)Y and (FY )an are isomorphic on the stalks, and Proposition 2.2.12 of
[4] therefore implies that the two sheaves are isomorphic.

Note that FY still remains coherent, and Propositions 2 implies that (Fan)Y ∼= (FY )an will
also be a coherent sheaf.

3 First Theorem in GAGA

We will continue with the notation that we’ve been using throughout this paper. That is, let
X be an algebraic variety with a coherent sheaf F , and let Xan and Fan be their analytificiations,
respectively. Suppose that U is a closed subset of X and consider a section s ∈ F(U). Then using
the map φ : Xan → X, we can consider s as a section s′ of the inverse image functor φ−1F over the
open Uan ⊂ Xan. With this, we can construct the the map ε : s 7→ s′ ⊗ 1 sending s to a a section
of φ−1F ⊗HXan over Uan, which induces the mapping

ε : F(U) −→ Fan(Uan)

This map extends to a map on Čech cohomology in a natural way; suppose that U = {Ui} is
a finite open cover of X and Uan = {Uan

i } is the corresponding finite open cover of Xan. Then for
any combination of indices i0, . . . , iq, what we said above implies that we have a homomorphism

ε : F(Ui0 ∩ . . . ,∩Uiq ) −→ Fan(Uan
i0 ∩ . . . ,∩U

an
iq )

which induces a homomorphism on the q-cochains

ε : Cq(U ,F) −→ Cq(Uan,Fan)
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for every positive integer q. If we let dq denote the differential on the cochains Cq(U ,F) and danq
denote the differential on the cochains Cq(Uan,Fan), then we have danp ◦ ε = ε ◦ dp from basic
properties of the tensor product. That is, our map ε commutes with the differential, so it is a
cochain map and induces a map on the sheaf cohomology

ε : Hq(U ,F) −→ Hq(Uan,Fan)

Finally, taking the direct limit over the open covers, we get a mapping on the Čech cohomology
groups

ε : Hq(X,F) −→ Hq(Xan,Fan)

With this setup, we have the first major theorem of Serre’s Géométrie Algébrique et Géométrie
Analytique:

Theorem 1: If X is a projective variety with a coherent algebraic sheaf F , then for every
integer q ≥ 0, the homomorphism

ε : Hq(X,F) −→ Hq(Xan,Fan)

defined above is bijective.

To show why this is true, we will reduce to the case of a simple algebraic variety, and then
prove the result in two cases (as Lemmas below) before generalizing to an arbitrary one. First, note
that for any projective variety X, there is a closed embedding X → Pr(C) for some integer r. For
any coherent sheaf F on X, we can extend it to a coherent sheaf FPr(C) on Pr(C) which is zero on
Pr(C) rX. From Proposition 8 in Section 26 of [5], we have isomorphisms

Hq(X,F) ∼= Hq(Pr(C),FPr(C)) and Hq(Xan,Fan) ∼= Hq
(
Pr(C)an, (Fan)P

r(C))
From the naturally of the map ε, we have the following commutative diagram

Hq(X,F) Hq(Xan,Fan)

Hq(Pr(C),FPr(C)) Hq
(
Pr(C)an, (FPr(C))an

)

ε

ε

∼= ∼=

where we are using Proposition 3 to makes sense of the cohomology group in the bottom right of
the diagram. Therefore, it suffices to prove Theorem 1 for the case when X = Pr(C). For the
remainder of the section, we will set X = Pr(C).

Lemma 1: Theorem 1 holds for the structure sheaf OX .

5



Proof: By Lemma 5.3.1 in [4], we know that

Hq(X,OX) ∼=

{
C q = 0

0 else

On the other hand, by Dolbeault’s theorem we know that Hp,q(Xan) ∼= Hq(Xan,Ωp) where Ωp is
the sheaf of holomorphic p forms on M . Since Oan

X = Ω0, we can use an explicit calculation of the
Dolbeault cohomology (for example found on the Wikipedia page [1]) to get

Hq(Xan,OX) ∼= H0,q(Xan) ∼=

{
C q = 0

0 else

which proves our result.

Lemma 2: Theorem 1 holds for the coherent sheaf OX(n).

Proof: We will proceed by induction on r, the dimension of X. The case when r = 0 is
trivial, so for our inductive hypothesis, suppose that the result holds true for dimensions less than
r. Using the homogenous coordinates t0, . . . , tr, let’s define E ∼= Pr−1(C) to the the zero lotus
tr = 0. Then we have the exact sequence of sheaves

0 −→ OX(−1)
×tr−−→ OX −→ OE −→ 0

where OX → OE is the restriction mapping, and ×tr is multiplication by tr. Now, we can tensor
by OX(n) to get the short exact sequence

0 −→ OX(n− 1) −→ OX(n) −→ OE(n) −→ 0

Now taking the long exact sequence induced by Čech cohomology, as well as using the naturally of
our map ε, we get the commutative diagram

. . . Hq(X,OX(n− 1)) Hq(X,OX(n)) Hq(X,OE(n)) Hq+1(X,OX(n− 1)) . . .

. . . Hq(Xan,OX(n− 1)an) Hq(Xan,OX(n)an) Hq(Xan,OE(n)an)) Hq+1(Xan,OX(n− 1)an) . . .

ε ε ε ε

We can identify the cohomology groups Hq(X,OE(n)) ∼= Hq(E,OE(n)) and
Hq(Xan,OE(n)an)) ∼= Hq(Ean,OE(n)an)), so our induction hypothesis implies that

ε : Hq(X,OE(n)) −→ Hq(Xan,OE(n)an))

is bijective for each n and q.
To conclude our proof, we need to use induction on n. We know the result is true for the

base case n = 0 by Lemma 1. If our result holds for OX(n− 1), that is, if

ε : Hq(X,OX(n− 1)) −→ Hq(Xan,OX(n− 1)an)
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is bijective for each q, then the Five Lemma applied to our commutative diagram above implies
that

ε : Hq(X,OX(n)) −→ Hq(Xan,OX(n)an)

is bijective.

Now we are ready to address Theorem 1 in its full generality.

Proof of Theorem 1: We will proceed by descending induction on q, the q-th Čech coho-
mology group. As a base case, note that for a coherent algebraic sheaf F on X, we know that
Hp(X,F) = 0 and Hp(Xan,Fan) = 0 for every p > 2r by Grothendieck’s vanishing theorem [7].

Now for our inductive case, consider some coherent algebraic sheaf F on X. By the Corollary
to Theorem 1 of Section 55 in [5], there exists a short exact sequence of coherent sheaves

0 −→ R −→ OX(n)q −→ F −→ 0

Now we can take the long exact sequence induced by Čech cohomology and use the naturally of
our map ε to get the following commutative diagram

. . . Hq(X,R) Hq(X,OX(n)q) Hq(X,F) Hq+1(X,R) Hq+1(X,OX(n)q) . . .

. . . Hq(Xan,Ran) Hq(Xan, (OX(n)q)an) Hq(Xan,Fan) Hq+1(Xan,Ran) Hq+1(Xan, (OX(n)q)an) . . .

ε1 ε2 ε3 ε4 ε5

From Lemma 2, we know that the maps e2 and e5 are bijective, and from our inductive
hypothesis we also get that e4 is bijective. By one of the Four-Lemmas (the first one listed on
wikipedia), we get that e3 must be surjective. Furthermore, since we have shown this for an
arbitrary coherent sheaf F , the same must hold for R, which implies that e1 is also surjective.
Therefore, by the 5-Lemma, we get that e3 must be a bijection.

4 Second Theorem of GAGA

Now let us cover the next part of Serre’s paper. The following results are the remaining
major theorems from GAGA:

Theorem 2: Morphisms between two coherent algebraic sheaves, F and G on X, are in
bijection with morphisms between the coherent analytic sheaves, Fan and Gan.
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Theorem 3: For every coherent analytic sheafM on Xan, there is a unique coherent algebraic
sheaf F on X such that M is isomorphic to Fan.

Equivalently, Theorem 2 states that the functor F 7→ Fan, between the category of coherent
algebraic sheaves and the category of coherent analytic sheaves, is fully faithful. Likewise, in the
language of category theory, Theorem 3 means that the functor is essentially surjective. These two
theorems combined means that there is an equivalence of categories between coherent algebraic
sheaves and coherent analytic sheaves.

Theorem 3 takes a little more work than we have time for here, but Theorem 2 is simple
enough to show. First, given a sheaf of rings R, and two R-modules, F and G, we define the sheaf of
germs of homomorphisms to be the sheaf which maps U 7→ HomR(U)(F(U),G(U)), and we denote
it as HomR(F ,G). It can be shown (for instance in Proposition 5 of Section 14 in [5]) that if F
is a coherent sheaf, then we have an isomorphism

(
HomR(F ,G)

)
x
∼= HomRx

(Fx,Gx). With these
tools, we are ready to prove our next theorem.

Proof of Theorem 2: Let F and G be two coherent algebraic sheaves on X, and set A =
HomOX

(F ,G) and B = HomHXan (Fan,Gan). Our first goal is to show that there is an isomorphism
between Aan and B, and by Proposition 2.2.12 in [4], it suffices to show there is an isomorphism on
the stalks. Recall that from the continuous inclusion φ : Xan → X, we get that (φ−1A)x = Ax for
all x ∈ Xan, and similarly for any coherent sheaf on X.

Given any x ∈ Xan, an element ψ ∈ Ax = HomAx
(Fx,Gx) is simply a morphism from Fx to

Gx. Therefore, we can construct a map

(φ−1A)x −→ Bx
ψ 7−→ ψ′

where ψ′ : Fx⊗OX,x
HXan → Gx⊗OX,x

HXan is the map which sends ψ′ : f ⊗h 7→ ψ(f)⊗h. Finally,
applying the functor ⊗OX,x

HXan,x we get a map

ιx : Aan
x −→ Bx

As stated above, note that this is actually a map

ιx : HomOX,x
(Fx,Gx)⊗OX,x

HXan,x −→ HomHXan,x
(Fx ⊗OX,x

HXan,x,Gx ⊗OX,x
HXan,x)

Since (OX,x,HXan,x) is a flat couple, Proposition 21 in [6] implies that this is actually an isomor-
phism.

Now consider the homomorphisms

H0(X,A)
ε−→ H0(Xan,Aan)

ι−→ H0(Xan,B)

Note that an element of H0(X,A) is a global section of A, which is simply a morphism from F
to G. Similarly, H0(Xan,B) is the group of morphisms from Fan to Gan. Theorem 1 implies that
ε is bijective, and our statement above means that ι is bijective, so we have a bijective map from
H0(X,A) to H0(Xan,B).
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