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Abstract

Given suitable information about a finite index subgroup of SL2(Z), one can easily compute its
genus. The reverse question is less straightforward; given an arbitrary genus, what can we say
about the non-congruence and congruence subgroups which have that genus? Using techniques
presented in Kulkarni’s paper [9], one can show that there are infinitely many non-congruence
subgroups of SL2(Z) that have any given genus. Rademacher conjectured that there are only
finitely many genus zero congruence subgroups, and indeed Dennin proved a more general result
[2] that there are at most finitely many congruence subgroups of any given genus. However,
it still remains an open question as to whether or not every genus can be obtained by some
congruence subgroup. In this paper, we present an exposition of some results and possible ways
to approach the open question.
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1 Introduction

In this paper, we are interested in subgroups of SL2(Z), the special linear group consisting
of 2-by-2 integer matrices with determinant 1. Recall that the principal congruence subgroup
of level N in SL2(Z) is

Γ(N) =

{(
a b
c d

)
∈ Γ

∣∣∣∣ (a b
c d

)
≡
(

1 0
0 1

)
(modN)

}
A finite index subgroup Γ < SL2(Z) is a congruence subgroup of level N if Γ(N) ≤ Γ and N
is the smallest integer such that this is true. Otherwise, we call Γ a non-congruence subgroup.
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Recall that subgroups of SL2(Z) act on the complex upper half-plane H by the linear frac-
tional transformation γτ 7→ aτ+b

cτ+d , where γ =
(
a b
c d

)
∈ SL2(Z). Furthermore, we can extend this

action to the space H∗ = H ∪Q ∪∞. Let Γ < SL2(Z) be a finite index subgroup, then we define a
fundamental domain DΓ for Γ to be a hyperbolic polygon in H∗ such that for every τ ∈ H∗, the
interior of DΓ contains exactly one point from the Γ-orbit of τ . A complex structure can be put
on the quotient space Γ\H to obtain a noncompact Riemann surface which we will denote as Y (Γ).
We can compactify this space by adding finitely many points corresponding to the cusps of Γ. This
space, defined by Γ\H∗, is denoted as X(Γ) and is called a modular curve. For any finite index
subgroup Γ < Γ, we define the genus of Γ to be the genus of the space X(Γ), and we denote it as
g(Γ).

There are known formulas for computing the genus of various congruence subgroups, such
as Γ(N), Γ0(N), and Γ1(N) (see for example [5]). The genus increase with N at different rates
for these classes of subgroups, and it increases the slowest for Γ0(N) for small N . One might
wonder if the subgroups Γ0(N) attain every genus, but it can be checked using Sage that this
is not true; the first few genera that are never attained by subgroups of the form Γ0(N) are
150, 180, 210, 286, 304, 312, 336. In fact, it was proved in [1] that the set

{
g
(
Γ0(N)

)}
n∈Z is a density

zero subset of the integers. Now, it is natural to ask what genera do congruence and non-congruence
subgroups attain. In the first part of this paper, we will prove that infinitely many non-congruence
subgroups attain any given genus. In the second part of this paper, we will explain some approaches
towards constructing congruence subgroups of an arbitrary genus.

Given some finite index subgroup Γ < SL2(Z), we can determine its genus as follows; first,
if we pick coset representatives {γi}1≤i≤µ for SL2(Z)/Γ and let F be the classical fundamental
domain for SL2(Z), then

DΓ =

µ⋃
i=1

γiF

is a fundamental domain for Γ. Fundamental polygons are simply hyperbolic polygons on H∗ with
identifications on certain edges, so we can view it as a fundamental polygon for Y (Γ). Then we can
obtain X(Γ) by adding the vertices of this polygon, which correspond directly to the cusps of Γ.
Finally, given a fundamental polygon, we can use tools from topology to compute its genus, thereby
finding g(Γ).

We now have three main objects of interest: the group Γ, the fundamental domains, and
the space X(Γ). As we explained above, it is easy to get from Γ to the Riemann surface, however,
it is harder to work backwards from the space to the group. This is because there are infinitely
many fundamental domains for a given finite index subgroup of Γ, and it is difficult to construct
a subgroup given only its coset representatives. In the next section, we will introduce a special
fundamental domain associated to each Γ which will help us bridge the gap between group and
space.

2 Constructing Finite Index Subgroups of Arbitrary Genus

The material here follows the work of Ravi Kulkarni, as in [9].
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2.1 Special Polygon

First we will prove the following lemma:

Lemma 2.1: Let Γ < SL2(Z) be a finite index subgroup and P a hyperbolic polygon such that
(1) If τ ∈ H∗ is in the interior of P and γ ∈ Γ, then γτ ∈ P implies that γ = I.
(2) For each side e of P , there is a γ ∈ Γ that maps e to another side of P in an

orientation reversing manner.
Then P is a fundamental domain for Γ.

Proof: Condition (1) implies that to prove P is a fundamental domain, all we have to show
is that for every τ ∈ H∗, there is a γ ∈ Γ such that γτ ∈ P . This is equivalent to saying that

H∗ ⊆
⋃
γ∈Γ′

γP

For each γ ∈ Γ, we will call γP a P -tile, and condition (1) means that these tiles don’t overlap,
except perhaps on the boundary. Now seeking a contradiction, suppose that there is some subset of
H∗ which is not included in this tiling. Then there is an η ∈ Γ such that ηP has an edge e without
a P -tile on the other side.

Note that η−1e is a side of P , so condition (2) implies that there is another side e′ of P and
a matrix γ ∈ Γ such that γP is adjacent to P and the tiles intersect at the side γe′ = η−1e. This
means that ηγP is a P -tile which is adjacent to ηP and lies across the side e. However, this is a
contradiction, so we conclude our claim.

To help keep track of all the definitions introduced in this section, we will use the Dedekind
Tessellation, which first appeared in print in [7]. The tessellation is formed by taking the standard
tessellation formed by the action of PSL2(Z) on H and including the identification τ ∼ −(τ̄).
Visually, each region in the standard tessellation (coming from the action of SL2(Z)) is divided into
two halves, one white and one black [see Figure 1].

We define an even vertex to be a point where two black and two white regions meet (such
as i), and we define an odd vertex to be a point where three black and three white regions meet
(such as ρ = eπi/3). Given any two points x, y ∈ H∗, there is a unique circle passing through both
points and has a center on Q. The arc of this circle contained in H∗ which connects x and y is
called a hyperbolic arc.

We define an even edge as a hyperbolic arc connecting a cusp to an even vertex (equivalently
these are the PSL2(Z) orbits of the hyperbolic arc joining i and ∞). We define an odd edge as a
hyperbolic arc connecting a cusp to an odd vertex (equivalently, the PSL2(Z) orbits of the hyperbolic
arc joining ρ and ∞). We define an f-edge as a line segment connecting an odd vertex to an even
vertex (equivalently, the PSL2(Z) orbits of the hyperbolic arc joining ρ and i).

Notice that for an odd edge, there is a unique odd edge which meets its odd vertex at an
initial angle of 2π

3 . We call this pair of odd edges an odd side. Also notice that for each even edge,
there is a unique even edge with which it forms a hyperbolic arc between elements of the cusps. We
call this pair of even edges an even side or a free side depending on the side-pairing identification
given to it (which will be explained immediately bellow).
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Figure 1: Dedekind Tessellation

We are now ready to define a key object of our study. A special polygon P is a hyperbolic
polygon made of odd sides, even sides, and free sides, with certain side-pairing identifications:

(1) Each pair of odd edges which form an odd side are identified to each other in
an orientation-reversing manner.
(2) For each pair free edges, we either:

• Identify the two free edges together in an orientation-reversing manner,
and we call it an even pairing
• Don’t identify identify the two free edges, call it a free pairing, and
identify the pair to another free pairing in an orientation-reversing manner.

Note that the last condition implies that we must have an even number of free pairs. Furthermore,
we require that 0 and ∞ are among the vertices of P .

Consider the example shown below in Figure 2, where the boundary of a special polygon P ′

is drawn in bold and the sides are identified (with orientation) by the number and direction of the
arrows. The far left-hand side shows an example of a free pairing formed by the even edge from 0
to i and the even edge from i to ∞. This free pairing is identified with the free pairing formed by
the even edge from ∞ to i+ 2 and the even edge from i+ 2 to 2. In the bottom left of the special
polygon is an example of an odd side. Finally, the arc from 2

3 to 1 is an example of an even pairing,
because unlike the other pairs of even edges, we have chosen to identify the two edges together.

Given two pairings on the boundary of a special polygon P which are identified, there is a
unique γ ∈ PSL2(Z) that maps one to the other in an orientation-reversing manner. We call γ the
side pairing transformation associated to this pairing and denote ΓP the group generated by
all the side pairings transformations of P . Because of Lemma 2.1, it seems likely that if we pick
the right finite index subgroup of SL2(Z), that special polygons are actually fundamental domains
for that subgroup. In fact, we have the following two theorems due to Kulkarni:

Theorem 2.1 ([9] Theorem 3.2): If P is a special polygon then P is a fundamental domain
for ΓP . Moreover, the side pairing transformations {γi} are an independent set of generators
of ΓP . That is, the only relations on the γi’s are γ2

i = 1 or γ3
i = 1 for the finite-order γi’s.
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Figure 2: Example of Special Polygon, P ′

Theorem 2.2 ([9] Theorem 3.3): For every Γ < SL2(Z) of finite index, there is a special
polygon P such that Γ = ΓP .

Note that for any fundamental domain of a finite index subgroup of SL2(Z), the subgroup
is generated by the transformations that map identified sides on the fundamental domain together.
However, special polygons have the interesting characteristic that these generators form an inde-
pendent set.

Let’s return to our example above. By Theorem 2.1, we get that that P ′ is the fundamental
domain for the finite index subgroup ΓP ′ . If we take this fundamental domain and add one point
corresponding to the cusp of ΓP ′ we get the fundamental polygon in Figure 3, which represents
X(ΓP ′).

Figure 3: Fundamental Polygon for X(ΓP ′)

From this, we see that the genus of ΓP ′ is equal to 1.
We have now seen the usefulness of special polygons, so it makes sense for us to get a better
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understanding of their components and what information they hold. To do so, we will introduce
the notion of a farey symbol.

2.2 Farey Symbols

Recall that a Farey sequence (of order n) is a sequence of reduced fractions between 0
and 1 whose denominators are less than or equal to n, arranged in order of increasing size. One
fundamental fact of Farey sequences is that if a

b and c
d are next to each other in a sequence, then

bc− ad = 1.
With this condition in mind, we define a generalized Farey sequence to be a finite

sequence
{−1

0 , x0, . . . , xn,
1
0

}
where each xi = ai

bi
is a reduced fraction with bi > 0, and if we set

x−1 = −1
0 and xn+1 = 1

0 , then
ai+1bi − aibi+1 = 1

for −1 ≤ i ≤ n.

Lemma 2.2 ([9] Proposition 2.2): Two cusps x
y and n

m are connected by an even side or free

side if and only if |xm− ny| = 1.

We now define a Farey symbol as a generalized Farey sequence which contains additional
information related to side-pairing identification; between each adjacent numbers xi, and xi+1, we
assign the symbol “◦” for an even pairing, or the symbol “•” for an odd pairing, or a positive integer
pi for a free pairing. Furthermore, each integer that appears as a free pairing appears exactly twice
in the Farey symbol.

If P is a special polygon, let x0, . . . , xn be its vertices lying in Q listed in ascending order. By
Lemma 2.2, we know that ai+1bi−aibi+1 = 1, which makes

{−1
0 , x0, . . . , xn,

1
0

}
a generalized Farey

sequence. Finally, we can include the side-pairing information to represent our special polygon as
a Farey symbol.

On the other hand, if F is a Farey symbol, we can construct a unique special polygon for F .
First, let the entries of F be the vertices of our special polygon. If two adjacent entries, xi and xi+1,
form a free pairing or an even pairing, we let P have as a side the hyperbolic arc joining the two
cusps. If the entries form an odd pairing, then let γ ∈ Γ be the unique element such that γ(0) = xi
and γ(∞) = xi+1. Then if H0,ρ is the hyperbolic arc from 0 to ρ, and Hρ,∞ is the hyperbolic arc
from ρ to ∞, then we let P have as a side the union of ρ(H0,ρ) and ρ(Hρ,∞).

From this, it is evident that we have a bijection between Farey symbols and special poly-
gons. Furthermore, the map from special polygons to the finite index subgroups of SL2(Z) which
they represent is surjective and finite-to-one, which induces the same map from Farey symbols to
subgroups.

To solidify our understanding of Farey symbols, let’s return to our running example. If we
look at Figure 2, we see that Lemma 2.2 holds true for the vertices of our special polygon P ′.
Therefore, we have the generalized Farey sequence {∞, 0, 1

2 ,
2
3 , 1, 2,∞} which we can turn into a

Farey symbol by adding the side pairing identification shown in Figure 4.
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Figure 4: Farey symbol for P ′

2.3 Constructing Explicit Subgroups

There are a number of properties and group invariants that can be obtained from analyzing
special polygons and their corresponding Farey symbol. For one thing, it was proved by Kulkarni
that

Theorem 2.3 ([9] Theorem 6.1): Suppose ai
bi
, ai+1

bi+1
are two adjacent entries in a Farey symbol.

If they form an even pairing, let

Gi+1 =

(
ai+1bi+1 + aibi −a2

i − a2
i+1

b2i −ai+1bi+1 − aibi

)
If they form an odd pairing, let

Gi+1 =

(
ai+1bi+1 + aibi+1 + aibi −a2

i − aiai+1 − a2
i+1

b2i + bibi+1 + b2i+1 −ai+1bi+1 − ai+1bi − aibi

)
and if they form a free pairing and are identified with the side between ak

bk
and ak+1

bk+1
, let

Gi+1 =

(
ak+1bi+1 + akbi −akai − ak+1ai+1

bkbi + bk+1bi+1 −ai+1bk+1 − aibk

)
Then Gi+1 is the side transformation corresponding to the pairing of ai

bi
and ai+1

bi+1
.

Using this theorem, we can compute Gi+1 for −1 ≤ i ≤ n and get a complete set of independent
generators for the finite index subgroup which our Farey symbol represents.

Suppose we know the Farey symbol and special polygon for some finite index subgroup Γ.
Then the number of order-2 elliptic points, e2, is the number of even pairings, and the number of
order-3 points, e3, is the number of odd pairings. Also, looking at the orientation of the identified
sides, we can easily compute the genus g as well as the number of cusps, t. If we let [SL2(Z) : Γ] = µ,
then we can use Proposition 1.40 in [15] to conclude that

µ = 3e2 + 4e3 + 12g + 6t− 12

which means we can find the index of a subgroup given its special polygon. These are all attainable
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pieces of information since there are effective algorithms for computing the special polygon and
Farey symbol for a given finite index subgroup (see [8] Section 5).

Proposition 2.1: There are infinitely many finite index subgroups of SL2(Z) that have any
given genus.

Proof: First note that we can find infinitely many generalized Farey sequences that end with
an integer or a half integer and are longer than n terms, for any n ∈ Z (take for instance the
classical Farey sequences). Now fix some genus g, and consider an infinite list of generalized Farey
sequences that each have more than 4g terms. For each Farey sequence, we can turn it into a Farey
symbol by including 2g free pairings and N even pairings (where N is the in length of the Farey
sequence minus 4g) with the orientations given in Figure 5. This results in the special polygon in
Figure 5, where the orientations are given by arrows and side-pairing identifications are given by
letters.

Figure 5: Special Polygon for a finite index subgroup with genus g

As it can be seen, this special polygon represents a finite index subgroup of SL2(Z) with
genus g. Furthermore, it has either N even pairings and 1 odd pairing or N + 1 even pairings,
depending on if the Farey sequence ends in an integer or half integer. In this “proof by picture,”
we could have replaced the even pairings with odd pairings if we deemed fit. What’s important
to note is that we can keep adding 2-torsion or 3-torsion elements to create infinitely many finite
index subgroups with genus g.

Theorem 2.4: There are infinitely many non-congruence subgroups of Γ that have any given
genus.
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Proof: This follows directly from Proposition 2.1 and the result proved in [2] that there are
only finitely many congruence subgroups of Γ that have some fixed genus.

Proposition 2.1 and Theorem 2.4 are not novel results, but they were originally proved using
different techniques than those introduced in Kulkarni’s paper. Now that we have these results, we
are left with the open question; given any genus, can we always find a congruence subgroup with
that genus?

3 The Case of Congruence Subgroups

Suppose we wanted to use the method from Section 2 to construct congruence subgroups
with arbitrary genus. A possible technique could come from finding a connection between subgourps
Γ′ < Γ < SL2(Z) and the corresponding special polygons. That is, there is likely some relation
between the special polygon for Γ′ and the special polygon for Γ (relating the independent generators
of the groups). If this connection is a strong enough, there may be a way to tell if a finite index
subgroup is a congruence subgroup by comparing its special polygon to the special polygons for
Γ(N) as N ranges.

Another approach would be to use the explicit formulas in Theorem 2.3 to get a set of
generators for a finite index subgroup Γ (which are independent by Theorem 2.1). Then we may
write the group presentation for Γ in terms of the matrices L = ( 1 1

0 1 ) and R = ( 1 0
1 1 ), since these

elements generate SL2(Z). Finally, we can represent the subgroup as a transitive permutation group
(see for example [4] or [8] section 4) and apply Theorem 2.4 in [4] to check if it is a congruence
subgroup or not.

Yet another approach is to use the genus equation

g =
µ

12
− e2

4
− e3

3
− t

2
+ 1 (1)

for finite index subgroups Γ < SL2(Z). Instead of computing the genus directly, we can focus
on finding subgroups whose group-theoretic properties we can control. This is still difficult since
SL2(Z) is a group of infinite order, so we will turn our attention towards the corresponding finite
groups, SL2(Z/NZ). Recall that we have the following short exact sequence

0 −→ Γ(N) ↪−→ SL2(Z) −→ SL2(Z/NZ) −→ 0

and that SL2(Z/NZ) ∼= SL2(Z)/Γ(N). If we consider some congruence subgroup Γ(N) < Γ <
SL2(Z) of level N , then by the third isomorphism theorem, we know that Γ/Γ(N) ≤ SL2(Z)/Γ(N),
and furthermore every subgroup of SL2(Z/NZ) is of the form Γ/Γ(N) for some congruence subgroup
G of level N .

Also by the third isomorphism theorem, we have that

[SL2(Z) : Γ] = [SL2(Z)/Γ(N) : Γ/Γ(N)] = [SL2(Z/NZ) : Γ/Γ(N)]

Therefore, we have a one-to-one correspondence between congruence subgroups of level N and the
subgroups of SL2(Z/NZ). This correspondence is particularly nice because it preserves the index
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of the subgroups.
In this approach, our game is two-fold; first we want to determine how the properties used

in the genus equation (1) of a congruence subgroup Γ relate to group-theoretic properties of the
corresponding subgroup Γ/Γ(N). Second, we want to utilize the subgroup structure of SL2(Z/NZ)
to control these group properties and show that we can attain every genus (or determine if there are
some genera that are never obtained). No substantial progress has been made using this approach,
but for the rest of the paper, we will detail some work and obstacles that arise when trying to tackle
the open question in this manner.

3.1 Possible Indices for Subgroups of SL2(Z/NZ)
As we showed above, the simplest connection between group properties of congruence sub-

groups and their corresponding subgroup of SL2(Z/NZ) is the index. Again, this is because for every
G < SL2(Z/NZ), there is a congruence subgroup of level N with index equal to [SL2(Z/NZ) : G].
Now we can use this connection to try and answer the question, what are the possible indices that
congruence subgroups can obtain?

By the Chinese Remainder theorem, if N = pn1
1 . . . pns

s is the prime factorization of N , then
we have the isomorphism

SL2(Z/NZ) ∼= SL2

(
Z/pn1

1 Z× . . .× Z/pns
s Z

) ∼= s∏
i=1

SL2(Z/pni
i Z)

Note that if we find subgroups Gi < SL2(Z/pni
i Z) for each i, then we have

[
SL2(Z/NZ) :

s∏
i=1

Gi
]

=

s∏
i=1

[SL2(Z/pni
i Z) : Gi] (2)

Therefore, we will restrict our attention to finding subgroups of SL2(Z/pnZ) for primes p. What we
would like to be able to do is find a subgroup in SL2(Z/pnZ) of index p and then use equation (2)
to find construct subgroups of SL2(Z/NZ) with arbitrary index, thereby proving that congruence
subgroups can obtain every index. Unfortunately, we will show that this approach does not work
(Theorem 3.1). To see why this is, we will need some propositions to work with.

Let’s define PSL2(Z/pnZ) := SL2(Z/pnZ)/{±I} (where I is the identity matrix), and note
that for every 0 < r < n, there is a homomorphism

fnr : PSL2(Z/pnZ)→ PSL2(Z/prZ)

defined by reduction modulo pr, which is known to be surjective. We will define Kn
r := ker(fnr ),

which is a normal subgroup of PSL2(Z/pnZ), and is known to have order |Kn
r | = p3(n−r). We have

the following Proposition due to McQuillan:

Proposition 3.1 ([13] Proposition 4): The set {Kn
r }n−1

r=1 gives all proper normal subgroups of
PSL2(Z/pnZ) when p > 3.

Proof: See [13] for a proof.
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Now let G be an arbitrary group, and let Gp be the group generated by the pth powers of
all elements in G. That is, consider the subgroup Gp := 〈gp | g ∈ G〉 < G. Note that for any g ∈ G
and hp ∈ Gp, we have ghpg−1 = (ghg−1) . . . (ghg−1)︸ ︷︷ ︸

p times

= (ghg−1)p ∈ Gp. This implies that for all

g ∈ G, we get gGpg−1 ⊆ Gp, which means that Gp / G is a normal subgroup.

Proposition 3.2 ([14] Theorem 10): For a finite group G, the groups G and G/Gp have the
same number of subgroups with index p.

Proof: The proof can be found in [14], but it is short enough to write here. Suppose that
H < G is a subgroup with index p. This means that |G/H| = p, so for any g ∈ G, Lagrange’s
Theorem implies that gpH = (gH)p = H. In particular, we have the chain of subgroups Gp < H <
G.

The third isomorphism theorem then states that H/Gp < G/Gp and that [G/Gp : H/Gp] =
[G : H] = p. Furthermore, every subgroup of G/Gp with index p must be of the form H/Gp, for
some subgroup H of G with index p.

What we’ve shown so far is that the map from H 7→ H/Gp sends index p subgroups to
index p subgroups and is surjective. To show that it is injective, suppose that H/Gp = K/Gp and
consider any h ∈ H. As cosets, we have hGp = kGp for some k ∈ K, which implies that h = kg
for some g ∈ Gp < K. However, this implies that h ∈ K, and so H ⊂ K. Similarly, we can go the
other way and conclude that H = K.

We will now use Proposition 3.2 to prove a statement that will be used throughout the rest
of this paper.

Proposition 3.3 ([14] Proposition 20): A finite group G has a subgroup of index p if and only
if G 6= Gp.

Proof: The proof can be found in [14], but it is short enough to write here. Going one way,
we will prove the contrapositive; if G = Gp, then G/Gp is the trivial group, which has no subgroups
of index p. Therefore by Proposition 1.2, we know that G cannot have a subgroup of index p.

Going the other way, suppose that G 6= Gp, which implies that G/Gp is not the trivial
group. If we pick any nonidentity element xGp ∈ G/Gp, then we know that (xGp)p = xpGp = Gp.
Therefore, every nonidentity element in G/Gp has order p, so we must have |G/Gp| = pk for some
integer k. Since G/Gp is a p-group, it must have a subgroup H < G/Gp such that |H| = pk−1. This
means that [G/Gp : H] = p, so by Proposition 1.2, the group G must have a subgroup of index p.
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Now we are ready to show why we cannot take the naive approach of constructing subgroups
of SL2(Z/NZ) with arbitrary index.

Theorem 3.1: For any prime p > 3 and any positive integer n, there is no subgroup of
SL2(Z/pnZ) which has prime index q > 3.

Proof: First we will show that the we can work with the group PSL2(Z/pnZ) instead of
SL2(Z/pnZ); seeking a contradiction, suppose there is a subgroup G < SL2(Z/pnZ) with index q,

which means the order is equal to |G| = p3n−2

q (p+ 1)(p−1). Suppose that −I =
(−1 0

0 −1

)
/∈ G; then

since {±I} / SL2(Z/pnZ) is a normal subgroup, the product G{±I} :=
{
gα | g ∈ G, α ∈ {±I}

}
is

a subgroup of SL2(Z/pnZ). Furthermore, it is known that

|G{±I}| = |G| × |{±I}|
|G ∩ {±I}|

= 2
p3n−2

q
(p+ 1)(p− 1)

We know that |SL2(Z/pnZ)| = p3n−2(p+ 1)(p− 1), so Lagrange’s theorem implies that 2|q, which
is impossible since q > 3 is prime.

From what we’ve shown above, we must have −I ∈ G, so there is an inclusion of subgroups
{±I} < G < SL2(Z/pnZ). Note that {±I} / SL2(Z/pnZ) is a normal subgroup, so we can evoke
the third isomorphism theorem. Thus, we get G/{±I} < PSL2(Z/pnZ) and

q = [SL2(Z/pnZ) : G] = [SL2(Z/pnZ)/{±I} : G/{±I}] = [PSL2(Z/pnZ) : G/{±I}]

Furthermore, the third isomorphism theorem states that any subgroup of PSL2(Z/pnZ) must be of
the form G/{±I}, so there is a subgroup of index q in SL2(Z/pnZ) if and only if there is a subgroup
of index q in PSL2(Z/pnZ).

For convenience sake, let’s denote PSL(2, pn) = PSL2(Z/pnZ). We will now proceed on
induction by n; first we will prove the result for the case when n = 1. Since PSL(2, p) is a simple
group for p > 3, PSL(2, p)q being a normal subgroup implies that the subgroup is either trivial or
equal to all of PSL(2, p). To show that the subgroup is not just the trivial group, note that if p 6= q,
then (

1 1
0 1

)q
=

(
1 q
0 1

)
6= I

and if p = q, then by Fermat’s little theorem(
a 0
0 a−1

)q
=

(
ap 0
0 (a−1)p

)
=

(
a 0
0 a−1

)
6= I

for some a ∈ (Z/pZ)× not equivalent to ±1. Either way, we must have PSL(2, p)q = PSL(2, p),
which by Proposition 3.3 implies that PSL(2, p) has no subgroup of index q.

Now for our inductive hypothesis, suppose that our result holds for PSL(2, pk) for all k < n.
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Seeking a contradiction, suppose that there exists a subgroup G < PSL(2, pn) with index q. Us-
ing Proposition 3.1 and Proposition 3.3, we get that PSL(2, p)q is isomorphic to Kn

l for some
1 ≤ l ≤ n− 1. Let’s write PSL(2, pn)q = Kn

l , then Proposition 1.2 implies that

PSL(2, pn)/PSL(2, pn)q ∼= PSL(2, pn)/Kn
l
∼= PSL(2, pl)

has a subgroup of index q. However, this contradicts our inductive hypothesis, so we can conclude
our claim.

Setting q = p in Theorem 3.1 shows that we can’t take the approach of using equation (2)
and the Chinese remainder theorem, as we discussed in the beginning of this section. The theorem
above does not imply that congruence subgroups cannot attain every index, it just means that we
have to modify the way we are constructing them.

3.2 Elliptic Points of Subgroups of SL2(Z/NZ)
Given some congruence subgroup Γ(N) < Γ < SL2(Z), the goal of this section is to relate

e2(Γ), the number of elliptic points of order 2 in Γ, to some group-property of the corresponding
group Γ/Γ(N) < SL2(Z/NZ). At this point it is easier to work with PSL2(Z), so we will con-
sider congruence subgroups that contain {±I} so we can analyze their corresponding subgroups
in PSL2(Z/NZ). Recall that in the classical theory, we have a few ways to compute e2(Γ), some
geometric and some algebraic (see for example, [3]).

In the geometric sense, e2 is the number of points on H (unique up to the Γ-action) which
have an isotropy group of order 2. Alternatively, e2(Γ) is the number of points in the SL2(Z)-orbit
of i which lie the fundamental domain of Γ. On the more algebraic side, it can be shown that e2 is
the number of conjugacy classes of order 2 elements in Γ/{±I}. It is known that there is only one
conjugacy class of order two elements in PSL2(Z), namely the one corresponding to S =

(
0 −1
1 0

)
, so

it therefore suffices to know how this conjugacy class splits in congruence subgroups.
To search for an analagous result with SL2(Z/NZ), we will first take the algebraic approach.

Namely, given some G < PSL2(Z/NZ) corresponding to a congruence subgroup Γ < PSL2(Z), we
conjecture that e2(Γ) is equal to the number of conjugacy classes of order 2 elements in G. If this
is true, then there should be just one conjugacy class of order 2 elements in all of PSL2(Z/NZ),
corresponding to the similar fact above for PSL2(Z).

For the remainder of this section, we will work towards showing that PSL2(Z/pnZ) does
indeed have one conjugacy class of order 2 elements in most cases. To start, we will prove a lemma
which will be of use later.

Lemma 3.1: For any prime p > 3 and positive integer n, there is no subgroup of PSL2(Z/pnZ)
which has index 2.

Proof: For convenience sake, let G = PSL2(Z/pnZ) and G′ be the derived group of G. With
this notation, we have the chain of subgroups G′ < G2 / G, since we can write [x, y] = xyx−1y−1 =
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x2(x−1y)2y−2. Note that G′ is also a normal subgroup of G, and that G/G′ is abelian.
We can now use the third isomorphism theorem, which shows that

(G/G′)
/

(G2/G′) ∼= G/G2

is abelian, since the quotient of an abelian group is abelian. However, since G2 / G is a normal
subgroup, Proposition 1 tells us that G2 = G or G2 = Kn

l for some 1 ≤ l ≤ n−1. If G2 = Kn
l , then

by definition we get G/G2 = PSL2(Z/plZ), which is not abelian. Therefore the only way to not
reach a contradiction is if G2 = G, and therefore Proposition 3.3 implies that G has no subgroup
of index 2.

We will need one more working proposition before we can start showing a string of promising
results. Suppose we fix some Sylow p-subgroup K < G and consider any g ∈ G with order p. The
element g generates a group of order p and therefore is contained in some Sylow p-subgroup of G,
and since the Sylow p-subgroups are conjugate, we know that g is conjugate (under conjugation in
G) to some element of order p in K. The following proposition slightly generalizes this result in a
way that we will soon exploit.

Propostion 3.4: Let G be a finite group with order |G| = 2km, where m is odd and k ≥ 1.
Let K be a Sylow 2-subgroup, and H < K a subgroup with order 2k−1. If G doesn’t contain
a subgroup of index 2, then every element of order 2 is conjugate (under conjugation in G) to
an element in H.

Proof: Note that we have an action of G on the cosets {gH | g ∈ G}, given by g1(g2H) =
(g1g2)H. With this, we can show that a non-identity element g ∈ G is conjugate to an element in
H if and only if g has a fixed point in this action. To see this going one way, suppose we have the
fixed point

g(g1H) = (gg1)H = g1H

then we get g−1
1 gg1 ∈ H. Going the other way, if we started with g−1

1 gg1 ∈ H then we get that
g1H is a fixed point of g.

Recall that [G : H] = [G : K][K : H] = 2m = 2n + 2 for some odd integer n, since m
is odd. If we consider any element g ∈ G of order 2, then its action on the cosets above will
be the product of transpositions. Seeking a contradiction, suppose that g is not conjugate to an
element in H. Then what we showed above implies that g has no fixed points, and therefore its
action is the product of exactly 1

2 [G : H] = 2n + 1 transpositions. This means that under the
action above, g is an odd permutation, and it follows that exactly half of the elements in G yield
even permutations. However, this means that G has a subgroup of index 2, which contradicts our
assumption. Therefore, we can conclude that every element of order 2 must be conjugate to an
element in H.
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Note that Proposition 3.4 holds for the group G = PSL2(Z/pnZ) by Lemma 3.1, since we
have |G| = 1

2p
3n−2(p−1)(p+1) = 2km, where k ≥ 2 and m is some odd integer. Now we can apply

the proposition above to a special case:

Theorem 3.2: For any positive integer n and prime p > 3 such that p ≡ 3, 5 (mod 8), there is
only one conjugacy class of order 2 elements in PSL2(Z/pnZ).

Proof: Let’s write |PSL2(Z/pnZ)| = 2km, where m is some odd integer. If p ≡ 3, 5 (mod 8),
then we get that k = 2. In this case, the 2-subgroup {I, S} must lie inside of some Sylow 2-subgroup
K < PSL2(Z/pnZ) that has four elements. From Proposition 3.4, we get that every order 2 element
in PSL2(Z/pnZ) must be conjugate to an element in {I, S}, which means that the conjugacy class
of S is the only conjugacy class of order 2 elements.

To extend the theorem above, we need to know a little bit more about the structure of
PSL2(Z/pZ). For p > 3, the group structure of PSL2(Z/pZ) has been thoroughly studied, and it
has been shown before (see the exposition [6] of work from [10]) that the subgroups of PSL2(Z/pZ)
are:

a) Abelian groups of order p
b) Cyclic groups of order d for each d

∣∣p−1
2 and for each d

∣∣p+1
2

c) Dihedral groups of order 2d for each d
∣∣p−1

2 and for each d
∣∣p+1

2
d) Alternating groups A4 when p ≡ ±1 or ± 3 (mod 8)
e) Alternating groups A5 when p ≡ ±1 (mod 10).
f) Symmetric groups S4 when p ≡ ±1 (mod 8).

Theorem 3.3: For any prime p > 3, there is only one conjugacy class of order 2 elements in
PSL2(Z/pZ).

Proof: First note that the result can be checked directly for p = 5 (see for example the
Groupprops Wiki for the element structure of SL2(Z/5Z)). Therefore, suppose that p > 5, and let’s
write |PSL2(Z/pZ)| = 2km for some odd integer m. Then from our list of subgroups above, we get
that the Sylow p-subgroups of PSL2(Z/pZ) must be dihedral groups of order 2k, where 2k−1 is the
highest power of 2 which divides p±1

2 .
It’s known that the subgroups of the dihedral group D2d are either dihedral groups D2d/r,

(where r|2d), or cyclic groups Z/(d/r)Z, (where r|d). Therefore, we can consider the following chain
of subgroups

Z/(2k−1)Z < D2(2k−1) < PSL2(Z/pZ)

From Proposition 3.4 and Lemma 3.1, we get that every element in PSL2(Z/pZ) with order two
is conjugate to an element in the cyclic group Z/(2k−1)Z. However, there is only one element of
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order 2 in Z/(2k−1)Z. Therefore, every order two element in PSL2(Z/pZ) must be conjugate, and
we can conclude that the conjugacy class of S is the only conjugacy class of order 2 elements.

Using Theorem 3.3, we would like to generalize the result to PSL2(Z/pnZ) for any prime
p > 3 and positive integer n. If this were true, then the result would hold for PSL2(Z/NZ) for any
integer N , which can be seen by using the Chinese reminder theorem and the fact that (g1, h1) and
(g2, h2) are conjugate in the direct product of groups G×H if and only if g1 and g2 are conjugate
in G and h1 and h2 are conjugate in H. However, as of when this paper was written, I haven’t been
able to do so.

I believe that the meaning of e3 in the corresponding subgroup of SL2(Z/NZ) will be analo-
gous to the meaning of e2. However, I’m not sure how the number of cusps of a congruence subgroup
corresponds to a group theoretic property of the corresponding finite group. As Section 3 shows,
finding how the varibales in the genus equation relate to properties of subgroups of SL2(Z/NZ) is a
tedious manner, and controlling these quantities is another difficulty. Therefore, it might be better
to approach this unsolved problem in a different way.
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